The Central Hopf Algebra

Wednesday, September 23, 2020

Throughout the talk:

- There is a fixed base field $k = \overline{k}$.
- All Cats are finite braided tensor categories over **k**.
- Assume pivotal/spherical/ribbon when needed.
- Nonsemisimple modular categories. (Lyu. mid '90s)
- Definition uses:

$$\circ H := \int^{X \in \mathcal{C}} X^* \otimes X$$
 (An object)

$$\circ \omega : H \otimes H \to \mathbb{1}$$

$$\circ \omega : H \otimes H \to \mathbb{1}$$
 (A pairing)
 $\circ Q : H \to H^*$ (A comparison map)

Check out:

Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners

by Kerler and Lyubashenko ('01)

• Thm(Shimizu, '16) TFAE:

- \circ ω is nondegenerate \iff Q is an iso (Lyubashenko's 'modular')
- \circ $\mathcal{C} \boxtimes \mathcal{C}^{rev} \simeq \mathcal{Z}(\mathcal{C})$ (←factorizable)
- $\Omega: \mathsf{Hom}(\mathbbm{1},H) \to \mathsf{Hom}(H,\mathbbm{1}) \text{ is an iso}$

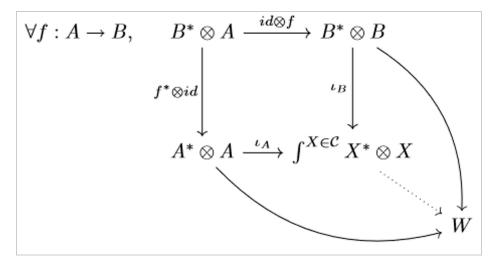
$$f$$
 (weakly factorizable)

• The Müger center of C is trivial.

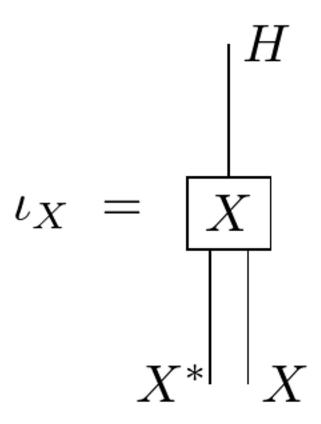
The main technical tool is $H:=\int^{X\in\mathcal{C}}X^*\otimes X$

(For semisimple Cats:
$$H \cong \bigoplus X^* \otimes X$$
)

Here's the U-P: (it's a coend)

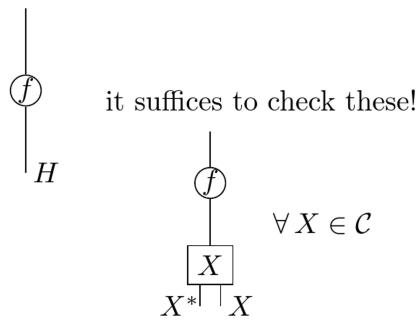


Graphically, we will denote the maps $\iota_X : X^* \otimes X \to H$ by

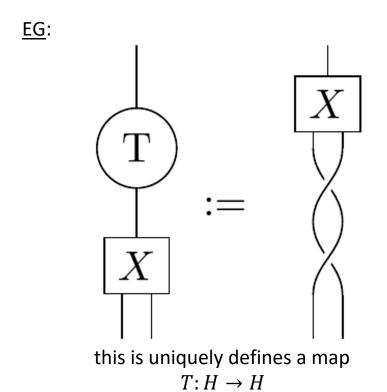


The U-P of H is about maps out, and so...

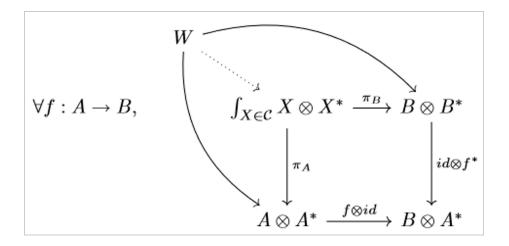
If you want to know this...



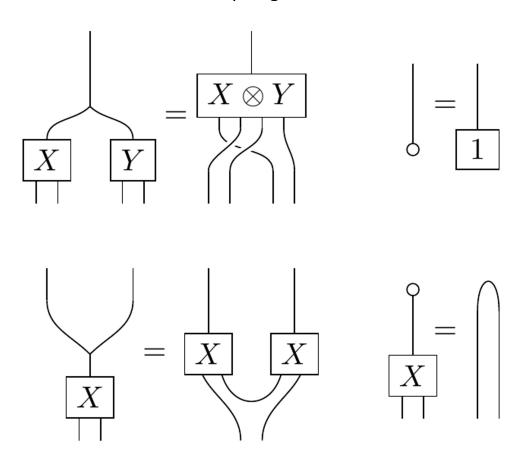
Uses the philosophy of `generalized points'



The dual H^* also satisfies a U-P: (this one's an end)



As it turns out, H is a Hopf algebra:



$$(X \otimes Y) \otimes Z \qquad X \otimes (Y \otimes Z)$$

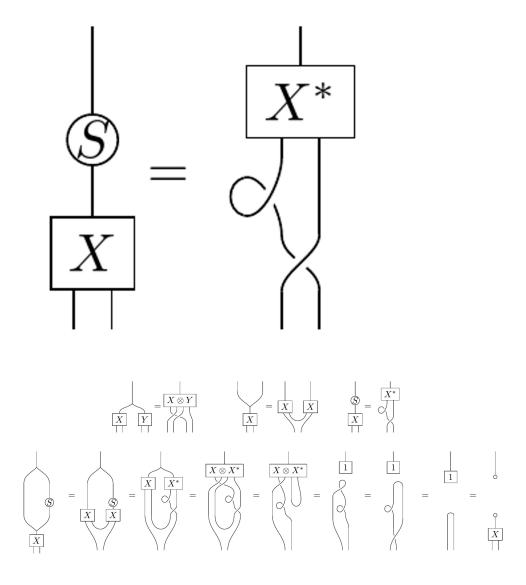
$$X \qquad Y \qquad Z$$

$$X \qquad Y \qquad Z$$

$$X \qquad Y \qquad Z$$

Great! So this shows that it's a bialgebra...

So what's the Antipode?



Observation: The algebra structure is related to the braiding.

Some (co)end calculations

Fact:
$$\int_{X \in \mathcal{C}} \mathsf{Hom}(FX, GX) \cong \mathsf{Nat}(F, G)$$

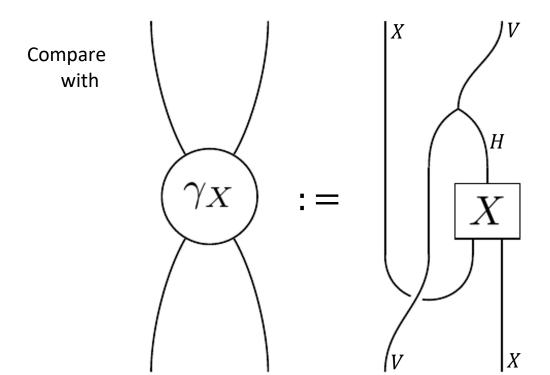
Check out:

Coend Calculus by Fosco Loregian (on the arXiv)

Using this fact, we can observe:

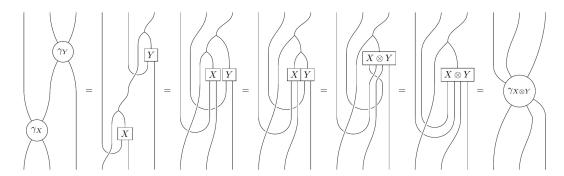
$$\begin{split} \operatorname{Hom}(V \otimes H, V) &\cong \operatorname{Hom} \left(V \otimes \int^{X \in \mathcal{C}} X^* \otimes X \,, \, V \right) \\ &\cong \int_{X \in \mathcal{C}} \operatorname{Hom}(V \otimes X^* \otimes X \,, \, V) \\ &\cong \int_{X \in \mathcal{C}} \operatorname{Hom}(X^* \otimes V \otimes X \,, \, V) \\ &\cong \int_{X \in \mathcal{C}} \operatorname{Hom}(V \otimes X \,, \, X \otimes V) \\ &\cong \operatorname{Nat} \Big((V \otimes -), (- \otimes V) \Big) \end{split}$$

Thus right *H* modules are candidates for half-braidings!

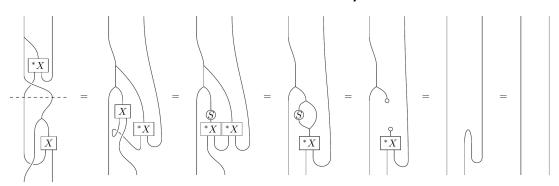


Claim: This works!

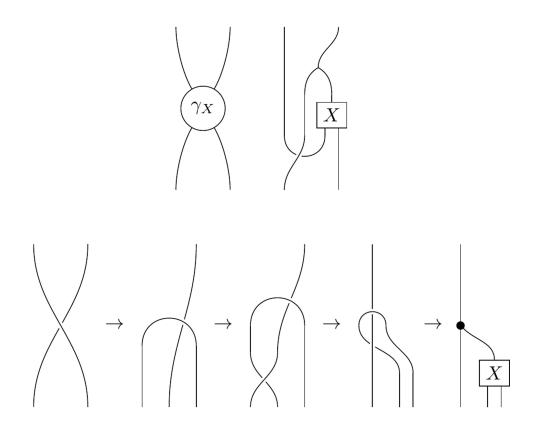
The hexagon: $(id \otimes \gamma_Y) \circ (\gamma_X \otimes id) = \gamma_{X \otimes Y}$



Here's a verification of invertibility:



This construction can be reversed:



Question: What module structure gives the over-braiding?

- Above computations show $C_H \cong Z(C)$.
- (Sidenote ightarrow It can be shown that $C_{H^*}\cong C\boxtimes C^{rev}$)
- There is an adjunction:

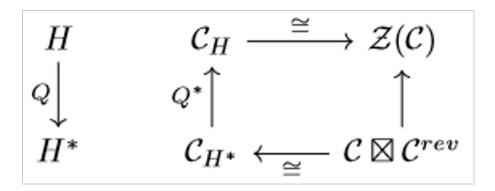
$$\mathsf{Hom}_{\mathcal{Z}(\mathcal{C})}\Big((V\otimes H,\gamma)\,,\,(W,\zeta)\Big)\cong \mathsf{Hom}_{\mathcal{C}}\Big(V\,,\,W\Big)$$

- Free modules give a left adjoint, so...
- $H \cong UF(1)$ (\leftarrow You've probably seen this object before)

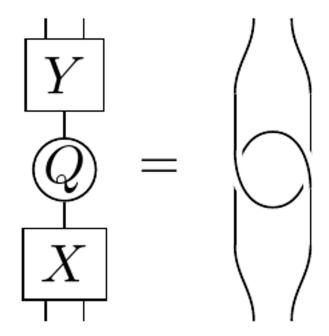
Let's look at one of Shimizu's proofs.

Strategy:

- 1. Take an algebra map: $\varphi: A \to B$
- 2. Consider the 'restriction of scalars' fuctor φ^* : $\mathcal{C}_B \to \mathcal{C}_A$
- 3. φ^* is an equivalence $\Longleftrightarrow \varphi$ is an isomorphism
- 4. Use the comparison map $Q: H \to H^*$
- 5. Profit



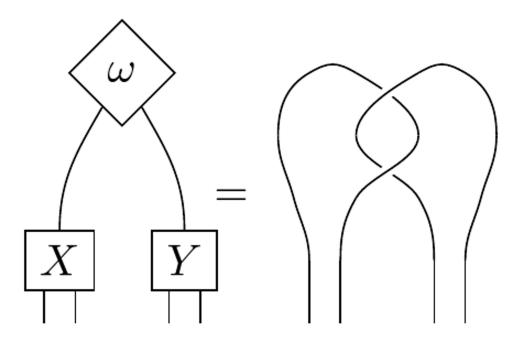
Let's see this Q:



Why is an a morphism of algebras?

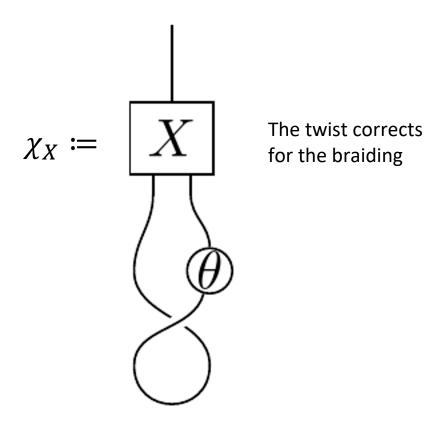
It preserves coproducts for analogous reasons.

The adjoint of Q is a pairing $\omega: H \otimes H \to \mathbf{1}$:



Let's examine how this relates to the classical interpretation involving the S-matrix:

When C is **semisimple,** there is a basis of $Hom(\mathbf{1}, H)$ indexed by the simples:



Using this basis, we obtain:

 Ω_* : $Hom(\mathbf{1}, H) \otimes Hom(\mathbf{1}, H) \rightarrow Hom(\mathbf{1}, \mathbf{1}) \cong \mathbf{k}$

Thus S is nondegenerate precisely when this pairing on hom-spaces is nondegenerate. This is the same as saying that the morphism Ω is an isomorphism of vector spaces, *i.e.* that C is weakly factorizable in the sense of Takeuchi.