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Introduction
°

Introduction

Partitions and Universal Traces

Main ldea

» The property 7(fo g) = 7(go f) completely characterizes the
trace of linear maps.

» In the categoy of finite sets this equation gives rise to a
trace-like invariant that assigns a partition to every
endomorphism.
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Universal Traces

We all know that
tr(AB) = tr(BA), (%)

but did you know that this gives a complete characterization?
Definition (Alt.)

The trace tr(—) is an invariant of endomorphisms in Vec that
satisfies the equation (%), and is initial with respect to this property. ].IJ
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Philosophizing

Universal Traces

That definition is so simple!

Perhaps this is why the trace is so important... &

Does it have to be Vec?
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Let's do FinSet

Universal Traces

Definition

The (universal) trace 7(—) is an invariant of endomorphisms in
FinSet that satisfies 7(fo g) = 7(go f), and is initial with respect
to this property.
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The Case of Finite Sets

Observations
» for aniso h, 7(f) =
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The Case of Finite Sets

Observations
> foraniso h, 7(f) = 7(ho (htof)) =7(hofoh™!)
» Every endomorphism f: X — X can be split as a surjection
s: X — im(f) followed by an injection i: im(f) — X
This gives

7(f) = 7(ios) = 7(s0i) = 7(Flimr) )
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How to Calculate

The Case of Finite Sets

1. Take an endomorphism of a . . o 3

finite set. \
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1. Take an endomorphism of a . - 3

finite set.
2. Restrict it to the largest \

subset on which it acts by an

isomorphism. /
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How to Calculate

The Case of Finite Sets

1. Take an endomorphism of a 3
.o e — o [ J
finite set.
2. Restrict it to the largest \ l
subset on which it acts by an * *
isomorphism. / \
[ o <— o
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The Case of Finite Sets
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How to Calculate

The Case of Finite Sets

1. Take an endomorphism of a 3
- e —— o [ ] 1
finite set. 3

2. Restrict it to the largest \ l
subset on which it acts by an * *
isomorphism. / \

3. Record the cycle type. ° e+ o
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The Case of Finite Sets
0000

How to Calculate

The Case of Finite Sets

1. Take an endomorphism of a 3
- e —— o [ ] 1
finite set. 3

2. Restrict it to the largest \ l
subset on which it acts by an * *
isomorphism. / \

3. Record the cycle type. ° e+ o

For this example, 7(f) = (4,3,1) ~_ 4+ IIJ
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Algebraic Structure

The Case of Finite Sets
P the set of all partitions inherits a natural semiring structure:
> 7(f)+7(g) == 7(fUg)
> 7(f)-7(g) = 7(f x g)
» 0=()and 1 =(1).
> Let z, =7((n, -~ 1)), then
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The Case of Finite Sets

P the set of all partitions inherits a natural semiring structure:
> r(f)+r(e) = r(fug)

> 7(f)-7(g) == T(f x g) "OP: Zn Zm = £
» 0=()and 1 =(1).

> Let z, =7((n, -~ 1)), then

(5,2,2,1) =z5+ 2z + 1
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Algebraic Structure

The Case of Finite Sets
P the set of all partitions inherits a natural semiring structure:
> 7(f)+7(g) == 7(fUg)
> () 7(g) = 7(fxg) » Prop: z, -z, = gz.
» 0=()and 1 =(1).

° ° ° °
AN AN AN s
> Let z, = T((na T 1))’ then /; /;1 /\1
° ° ° o

(5,2,2,1) =z5+ 2z + 1
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Algebraic Structure

The Case of Finite Sets

P the set of all partitions inherits a natural semiring structure:
> r(f)+r(e) = (fug)

> (f) - 7(g) = (f x g) (OP: ZnZm = B2
» 0=()and 1 =(1).

° ° ° °
AN AN AN s
> Let z, = T((na T 1))’ then /; /;1 /\1
° ° ° o

(5,2,2,1) =z5+ 2z + 1 EG:

Zy+ 2y = 224 IIJ
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Boredom Check

The Case of Finite Sets

L Try (z3+ 22) - (25 + 2)

2. What is 7(f) when f{x) = 3x — x® on the set {0, &1, £2}7?
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Finite Dynamics
[ Jele}

Finite Dynamics

Let f: X — X, for some finite set X.

» 7(f) is the cycle type of the restriction of fto the largest
subset on which f acts by a permutation.

» In terms of dynamics, 7(f) is a description of the stable set of
the map f.
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Familiar Invariants

Finite Dynamics

Let F,: P— N satisfy F,(zn) = 0n.m
> (Fio7)is

> (Fn o 7') is

> n- (F OT) is

> d-

Z (FdOT)

o

> > n-(Fo7)is
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Familiar Invariants

Finite Dynamics

Let F,: P— N satisfy F,(zn) = 0n.m
» (Fyo7) is the fixed points.
» (F,oT) is the number of n-cycles.
» n- (F,o7) is the number of (strictly) n-periodic points.
> > d- (FgoT) is the fixed points of .
din

o

> > n-(Fo7)is
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Finite Dynamics
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Familiar Invariants
Finite Dynamics
Let F,: P— N satisfy F,(zn) = 0n.m
» (Fyo7) is the fixed points.
» (F,oT) is the number of n-cycles.
» n- (F,o7) is the number of (strictly) n-periodic points.
> > d- (FgoT) is the fixed points of .
din

> > n- (Fn o 7') is the cardinality of the stable set. IIJ
n=1
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Counting Stable Sets

Finite Dynamics

Given | X| = n, how many stable sets are possible for the dynamical
system (X, f)?
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Counting Stable Sets

Finite Dynamics

Given | X| = n, how many stable sets are possible for the dynamical
system (X, f)?

Thinking of the system up to conjugacy, this means counting all
possible partitions of the form 7(f):

> p(k)

k=1
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Counting Stable Sets

Finite Dynamics

Given | X| = n, how many stable sets are possible for the dynamical
system (X, f)?

Thinking of the system up to conjugacy, this means counting all
possible partitions of the form 7(f):

> p(k)

This is OEIS# A026905 IIJ
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Applications to Group Theory

A G-representation (X, p) in a category C is a monoid
homomorphism p : G — End¢(X).
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» In classical representation theory, we consider G-reps in Vec.
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Applications to Group Theory

A G-representation (X, p) in a category C is a monoid
homomorphism p : G — End¢(X).
» In classical representation theory, we consider G-reps in Vec.
» Using the trace, each G-rep (V,p) in Vec produces a
character:

X, = trop : G— Endyec(V) = C.

Sean Sanford

Partitions and Universal Traces


http://pages.iu.edu/~scsanfor/

Applications to Group Theory

A G-representation (X, p) in a category C is a monoid
homomorphism p : G — End¢(X).
» In classical representation theory, we consider G-reps in Vec.
» Using the trace, each G-rep (V,p) in Vec produces a
character:

X, = trop : G— Endyec(V) = C.

» For any C, we can use its universal trace 7¢ to extend IIJ
character theory to the category of G-reps in C.

Sean Sanford
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Applications to Group Theory
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Applications to Group Theory

A G-representation (X, p) in FinSet is just a finite G-set.
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Applications to Group Theory
0000

Applications to Group Theory

A G-representation (X, p) in FinSet is just a finite G-set.
» All G-sets decompose into orbits
» Each orbit is isomorphic to G/H, for some H < G.
» Each orbit encodes a character

Sean Sanford
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Character Tables for S5

Applications to Group Theory

[1] | [(12)] | [(123)] (L] [(12)] | [(123)]
1] 1] 1 1 S3/S | 1 1 1
o| 1 —1 1 53/C3 2 p4p) 2
Vi 2 0 —1 53/C2 3 14+ 2 Z3
51/1 6 322 223
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Character Tables for S5

Applications to Group Theory

[1] | [(12)] | [(123)] (L] [(12)] | [(123)]

11 1 1 1=53/5| 1 1 1

o| 1 —1 1 53/C3 2 p4p) 2

Vi 2 0 —1 53/C2 3 14+ 2 Z3
51/1 6 322 223
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Character Tables for S5

Applications to Group Theory

[1] | [(12)] | [(123)] (D] 1(12)] | [(123)]

1)1 1 1 1=55/5 | 1 1 1

o| 1 —1 1 X= S3/C3 2 p4p) 2

Vi 2 0 —1 Y= 53/C2 3 14+ 2 Z3
51/1 6 322 223
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Character Tables for S5

Applications to Group Theory

[1] | [(12)] | [(123)] (L] ] [(12)] | [(123)]

11 1 1 1=5/S| 1 1 1

o| 1 —1 1 X= S3/C3 2 p4p) 2

Vi 2 0 —1 Y= 53/C2 3 14+ 2 Z3
XY = 51/1 6 322 223
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Character Tables for S5

Applications to Group Theory

(1] [(12)] |[(123)] %

1] 1 1 1 Vo _
X 2 pip) 2

Y| 3 |14+2 73 R(S3) =
XY 6 322 223

X2
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Character Tables for S5

Applications to Group Theory

(V1] [(12)] |[(123)] X2 =
1 1 1 1 5
X 2 pip) 2 YT =
Y| 3 |14+2 73 R(S3) =
XY 6 322 223
X?| 4 22, 4
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Character Tables for S5

Applications to Group Theory

(V1] [(12)] |[(123)] X2 — 2x
1 1 1 1 5
X 2 pip) 2 YT =
Y| 3 | 1+2z 73 R(S;) =
XY 6 322 223
X2 4 22, 4
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Character Tables for S5

Applications to Group Theory

: [(i)] [(112)] [(1§3)] X% =2X
2
X 2 pip) 2 YT =
Y| 3 |14+2 73 R(S3) =
XY 6 322 223
X?| 4 22 4
Y2 9 |1+ 4z 3z3
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Character Tables for S5

Applications to Group Theory

: [(i)] [(112)] [(1§3)] X2 =2X
2
X1 5 2 5 Yo=XY+Y
Y| 3 |14+2 73 R(S3) =
XY 6 322 223
X?| 4 22, 4
Y2 9 |1+ 4z 3z3
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Character Tables for S5

Applications to Group Theory

: [(1)] [(112)] [(1§3)] X2 =2X
2
X2 22 5 Y °=XY+Y
Y 3 14+ 2 Z3 R(53) ~ Z[X7 Y]
XYl 6 32, 273 (X2—2x, Y2 — XY — Y)
X?| 4 27, 4
Y2 9 |1+ 4z 3z3
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Conclusion
©00

Future Directions

» Other small/combinatorial categories
» Connections with Hochschild homology
» Making the construction functorial

Sean Sanford
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Thank You

P

Partitions and Universal Traces
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Boredom Update

1. Try (zz + 22) - (z5 + 2)

2. What is 7(f) when f{x) = 3x — x® on the set {0, 41, +2}7?
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Boredom Update

1. Try (23 + 22) . (Z5 + 2) = z15 + 210 + 2z3 + 22

2. What is 7(f) when f{x) = 3x — x® on the set {0, 41, +2}7?
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Boredom Update

1. Try (23 + 22) . (Z5 + 2) = z15 + 210 + 2z3 + 22

2. What is 7(f) when f{x) = 3x — x® on the set {0, 41, +2}7?

Answer: 7(f) =1+ 2z
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