Partitions and Universal Traces

Sean Sanford

Indiana University

April 21, 2020

Introduction

Partitions and Universal Traces

Main Idea

Introduction

Introduction

Partitions and Universal Traces

Main Idea

▶ The property $\tau(f \circ g) = \tau(g \circ f)$ completely characterizes the trace of linear maps.

Introduction

Partitions and Universal Traces

Main Idea

- ▶ The property $\tau(f \circ g) = \tau(g \circ f)$ completely characterizes the trace of linear maps.
- ▶ In the categoy of finite sets this equation gives rise to a trace-like invariant that assigns a partition to every endomorphism.

Universal Traces

We all know that

$$tr(AB) = tr(BA),$$

Universal Traces

We all know that

$$tr(AB) = tr(BA), (*)$$

but did you know that this gives a complete characterization?

Universal Traces

We all know that

$$\mathsf{tr}(AB) = \mathsf{tr}(BA), \tag{*}$$

but did you know that this gives a complete characterization?

Definition (Alt.)

The trace tr(-) is an invariant of endomorphisms in **Vec** that satisfies the equation (*), and is initial with respect to this property.

000

Universal Traces

That definition is so simple!

Perhaps this is why the trace is so important...

Does it have to be **Vec**?

000

Universal Traces

Definition

The (universal) trace $\tau(-)$ is an invariant of endomorphisms in **FinSet** that satisfies $\tau(f \circ g) = \tau(g \circ f)$, and is initial with respect to this property.

Observations

▶ for an iso h, $\tau(f) =$

Observations

• for an iso h, $\tau(f) = \tau(h \circ (h^{-1} \circ f))$

Observations

lacksquare for an iso h, $au(f) = au(h \circ (h^{-1} \circ f)) = au(h \circ f \circ h^{-1})$

Observations

lacksquare for an iso h, $au(f) = au(h \circ (h^{-1} \circ f)) = au(h \circ f \circ h^{-1})$

The Case of Finite Sets

•000

▶ Every endomorphism $f: X \to X$ can be split as a surjection $s: X \to \text{im}(f)$ followed by an injection $i: \text{im}(f) \hookrightarrow X$.

Observations

- lacksquare for an iso h, $au(f) = au(h \circ (h^{-1} \circ f)) = au(h \circ f \circ h^{-1})$
- Every endomorphism $f: X \to X$ can be split as a surjection $s: X \to \operatorname{im}(f)$ followed by an injection $i: \operatorname{im}(f) \hookrightarrow X$. This gives

$$\tau(f) = \tau(i \circ s)$$

Observations

lacksquare for an iso h, $au(f) = au(h \circ (h^{-1} \circ f)) = au(h \circ f \circ h^{-1})$

The Case of Finite Sets

0000

Every endomorphism $f: X \to X$ can be split as a surjection $s: X \to \operatorname{im}(f)$ followed by an injection $i: \operatorname{im}(f) \hookrightarrow X$. This gives

$$\tau(f) = \tau(i \circ s) = \tau(s \circ i)$$

Observations

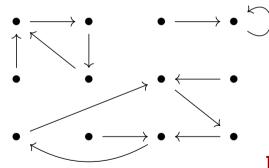
- lacksquare for an iso h, $au(f) = au(h \circ (h^{-1} \circ f)) = au(h \circ f \circ h^{-1})$
- Every endomorphism $f: X \to X$ can be split as a surjection $s: X \to \operatorname{im}(f)$ followed by an injection $i: \operatorname{im}(f) \hookrightarrow X$. This gives

$$\tau(f) = \tau(i \circ s) = \tau(s \circ i) = \tau(f|_{im(f)})$$

0000

The Case of Finite Sets

1. Take an endomorphism of a finite set.

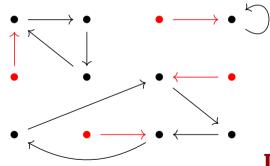


0000

How to Calculate

The Case of Finite Sets

- 1. Take an endomorphism of a finite set.
- 2. Restrict it to the largest subset on which it acts by an isomorphism.



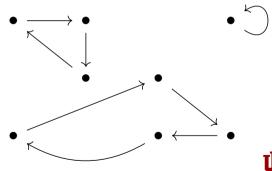
How to Calculate

The Case of Finite Sets

1. Take an endomorphism of a finite set

0000

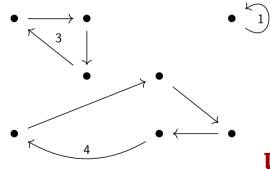
2. Restrict it to the largest subset on which it acts by an isomorphism.



How to Calculate

The Case of Finite Sets

- Take an endomorphism of a finite set
- 2. Restrict it to the largest subset on which it acts by an isomorphism.
- 3. Record the cycle type.

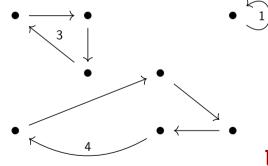


How to Calculate

The Case of Finite Sets

- 1. Take an endomorphism of a finite set
- 2. Restrict it to the largest subset on which it acts by an isomorphism.
- 3. Record the cycle type.

For this example, $\tau(f) = (4, 3, 1)$



The Case of Finite Sets

- $ightharpoonup au(f) + au(g) := au(f \sqcup g)$
- $ightharpoonup au(f) \cdot au(g) := au(f imes g)$
- \triangleright 0 = () and 1 = (1).
- ▶ Let $z_n = \tau((n, \dots 1))$, then

The Case of Finite Sets

- $ightharpoonup au(f) + au(g) := au(f \sqcup g)$
- ightharpoonup 0 = () and 1 = (1).
- ▶ Let $z_n = \tau((n, \cdots 1))$, then

$$(5,2,2,1) = z_5 + 2z_2 + 1$$

The Case of Finite Sets

- $ightharpoonup au(f) + au(g) := au(f \sqcup g)$
- ightharpoonup 0 = () and 1 = (1).
- ▶ Let $z_n = \tau((n, \cdots 1))$, then

$$(5,2,2,1) = z_5 + 2z_2 + 1$$

$$ightharpoonup Prop: z_n \cdot z_m =$$

The Case of Finite Sets

P the set of all partitions inherits a natural semiring structure:

- $ightharpoonup au(f) + au(g) := au(f \sqcup g)$
- ightharpoonup 0 = () and 1 = (1).
- ▶ Let $z_n = \tau((n, \cdots 1))$, then

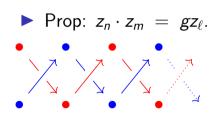
$$(5,2,2,1) = z_5 + 2z_2 + 1$$

▶ Prop: $z_n \cdot z_m = gz_\ell$.

The Case of Finite Sets

- $\triangleright \ \tau(f) + \tau(g) := \tau(f \sqcup g)$
- $ightharpoonup au(f) \cdot au(g) := au(f imes g)$
- \triangleright 0 = () and 1 = (1).
- ▶ Let $z_n = \tau((n, \dots 1))$, then

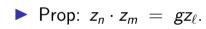
$$(5,2,2,1) = z_5 + 2z_2 + 1$$

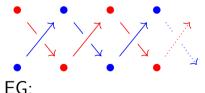


The Case of Finite Sets

- $\triangleright \ \tau(f) + \tau(g) := \tau(f \sqcup g)$
- $ightharpoonup au(f) \cdot au(g) := au(f imes g)$
- \triangleright 0 = () and 1 = (1).
- ▶ Let $z_n = \tau((n, \dots 1))$, then

$$(5,2,2,1)=z_5+2z_2+1$$





$$z_2 \cdot z_4 = 2z_4$$

Boredom Check

The Case of Finite Sets

- 1. Try $(z_3 + z_2) \cdot (z_5 + 2)$
- 2. What is $\tau(f)$ when $f(x) = 3x x^3$ on the set $\{0, \pm 1, \pm 2\}$?

Finite Dynamics

Let $f: X \to X$, for some finite set X.

- $\tau(f)$ is the cycle type of the restriction of f to the largest subset on which f acts by a permutation.
- In terms of dynamics, $\tau(f)$ is a description of the *stable set* of the map f.

Finite Dynamics 000

Finite Dynamics

- $ightharpoonup (F_1 \circ \tau)$ is
- $ightharpoonup (F_n \circ \tau)$ is
- $ightharpoonup n \cdot (F_n \circ \tau)$ is
- $ightharpoonup \int d \cdot (F_d \circ \tau)$ is
- $ightharpoonup \sum_{n=0}^{\infty} n \cdot (F_n \circ \tau)$ is

Finite Dynamics 000

Familiar Invariants

Finite Dynamics

- \blacktriangleright $(F_1 \circ \tau)$ is the fixed points.
- $ightharpoonup (F_n \circ \tau)$ is
- $ightharpoonup n \cdot (F_n \circ \tau)$ is
- $ightharpoonup \int d\cdot (F_d \circ \tau)$ is
- $ightharpoonup \sum_{n=0}^{\infty} n \cdot (F_n \circ \tau)$ is

Finite Dynamics

- \blacktriangleright $(F_1 \circ \tau)$ is the fixed points.
- ▶ $(F_n \circ \tau)$ is the number of *n*-cycles.
- $ightharpoonup n \cdot (F_n \circ \tau)$ is
- $ightharpoonup \int d\cdot (F_d \circ \tau)$ is
- $ightharpoonup \sum_{n=0}^{\infty} n \cdot (F_n \circ \tau)$ is

Finite Dynamics

- \blacktriangleright $(F_1 \circ \tau)$ is the fixed points.
- ▶ $(F_n \circ \tau)$ is the number of *n*-cycles.
- $ightharpoonup n \cdot (F_n \circ \tau)$ is the number of (strictly) *n*-periodic points.
- $ightharpoonup \int d\cdot (F_d \circ \tau)$ is
- $ightharpoonup \sum n \cdot (F_n \circ \tau)$ is

Finite Dynamics

- \blacktriangleright $(F_1 \circ \tau)$ is the fixed points.
- ▶ $(F_n \circ \tau)$ is the number of *n*-cycles.
- ▶ $n \cdot (F_n \circ \tau)$ is the number of (strictly) *n*-periodic points.
- ▶ $\sum_{d|n} d \cdot (F_d \circ \tau)$ is the fixed points of f^n .
- $\sum_{n=1}^{\infty} n \cdot (F_n \circ \tau)$ is

Finite Dynamics

- \blacktriangleright $(F_1 \circ \tau)$ is the fixed points.
- ▶ $(F_n \circ \tau)$ is the number of *n*-cycles.
- $ightharpoonup n \cdot (F_n \circ \tau)$ is the number of (strictly) *n*-periodic points.
- $ightharpoonup \sum d \cdot (F_d \circ \tau)$ is the fixed points of f^n .
- $ightharpoonup
 ightharpoonup n \cdot (F_n \circ \tau)$ is the cardinality of the stable set.

Counting Stable Sets

Finite Dynamics

Given |X| = n, how many stable sets are possible for the dynamical system (X, f)?

Counting Stable Sets

Finite Dynamics

Given |X| = n, how many stable sets are possible for the dynamical system (X, f)?

Thinking of the system up to conjugacy, this means counting all possible partitions of the form $\tau(f)$:

$$\sum_{k=1}^{n} p(k)$$

Finite Dynamics

Given |X| = n, how many stable sets are possible for the dynamical system (X, f)?

Thinking of the system up to conjugacy, this means counting all possible partitions of the form $\tau(f)$:

$$\sum_{k=1}^{n} p(k)$$

This is OEIS# A026905

A G-representation (X, ρ) in a category C is a monoid homomorphism $\rho: G \to \operatorname{End}_{\mathcal{C}}(X)$.

A G-representation (X, ρ) in a category C is a monoid homomorphism $\rho: G \to \operatorname{End}_{C}(X)$.

▶ In classical representation theory, we consider *G*-reps in **Vec**.

A G-representation (X, ρ) in a category C is a monoid homomorphism $\rho: G \to \operatorname{End}_{\mathcal{C}}(X)$.

- In classical representation theory, we consider G-reps in **Vec**.
- ▶ Using the trace, each G-rep (V, ρ) in **Vec** produces a character:

$$\chi_{
ho} \ = \ \operatorname{\sf tr} \circ
ho \ : {\it G}
ightarrow \operatorname{\sf End}_{\operatorname{\sf Vec}}({\it V})
ightarrow \mathbb{C}.$$

A G-representation (X, ρ) in a category C is a monoid homomorphism $\rho: G \to \operatorname{End}_{\mathcal{C}}(X)$.

- In classical representation theory, we consider G-reps in **Vec**.
- ▶ Using the trace, each G-rep (V, ρ) in **Vec** produces a character:

$$\chi_{
ho} \ = \ \operatorname{\sf tr} \circ
ho \ : {\it G}
ightarrow \operatorname{\sf End}_{
m f Vec}({\it V})
ightarrow \mathbb{C}.$$

 \triangleright For any \mathcal{C} , we can use its universal trace $\tau_{\mathcal{C}}$ to extend character theory to the category of G-reps in C.

A *G*-representation (X, ρ) in **FinSet** is just a finite *G*-set.

A G-representation (X, ρ) in **FinSet** is just a finite G-set.

- ► All *G*-sets decompose into orbits
- ▶ Each orbit is isomorphic to G/H, for some $H \leq G$.
- Fach orbit encodes a character

	[1]	[(12)]	[(123)]
1	1	1	1
σ	1	-1	1
V	2	0	-1

	[(1)]	[(12)]	[(123)]
S_{3}/S_{3}	1	1	1
S_3/C_3	2	z ₂	2
S_3/C_2	3	$1 + z_2$	Z 3
$\overline{S_1/1}$	6	$3z_{2}$	$2z_{3}$

		[1]	[(12)]	[(123)]
1		1	1	1
σ	•	1	-1	1
V	/	2	0	-1

	[(1)]	[(12)]	[(123)]
$1=S_3/S_3$	1	1	1
	2	z ₂	2
S_3/C_2	3	$1 + z_2$	Z 3
	6	$3z_{2}$	$2z_{3}$

Character Tables for S_3

	[1]	[(12)]	[(123)]
1	1	1	1
σ	1	-1	1
V	2	0	-1

	[(1)]	[(12)]	[(123)]
$\overline{1=S_3/S_3}$	1	1	1
$X = S_3/C_3$	2	z ₂	2
$Y = S_3/C_2$	3	$1 + z_2$	Z 3
$\overline{S_1/1}$	6	$3z_{2}$	$2z_{3}$

Character Tables for S_3

	[1]	[(12)]	[(123)]
1	1	1	1
σ	1	-1	1
V	2	0	-1

	[(1)]	[(12)]	[(123)]
$\overline{1=S_3/S_3}$	1	1	1
$X = S_3/C_3$	2	z ₂	2
$Y = S_3/C_2$	3	$1 + z_2$	Z 3
$XY = S_1/1$	6	$3z_{2}$	2 <i>z</i> ₃

Character Tables for S_3

	[(1)]	[(12)]	[(123)]
1	1	1	1
X	2	z ₂	2
Y	3	$1 + z_2$	Z 3
XY	6	$3z_{2}$	$2z_{3}$
X^2			
Y^2			

$$X^2 = Y^2 = (S_2) \cong$$

	[(1)]	[(12)]	[(123)]
1	1	1	1
X	2	z ₂	2
Y	3	$1 + z_2$	Z 3
XY	6	$3z_{2}$	$2z_{3}$
X^2	4	$2z_{2}$	4
Y^2			

$$X^2 = Y^2 = Y^2$$

$$\mathcal{R}(S_3) \cong$$

	[(1)]	[(12)]	[(123)]
1	1	1	1
X	2	z ₂	2
Y	3	$1 + z_2$	<i>z</i> ₃
XY	6	$3z_{2}$	$2z_{3}$
X^2	4	$2z_{2}$	4
Y^2			

$$X^2 = 2X$$
$$Y^2 =$$
$$(S_2) \simeq$$

	[(1)]	[(12)]	[(123)]
1	1	1	1
X	2	z ₂	2
Y	3	$1 + z_2$	Z 3
XY	6	$3z_{2}$	$2z_{3}$
X^2	4	$2z_{2}$	4
Y^2	9	$1 + 4z_2$	$3z_{3}$

$$X^{2} = 2X$$

$$Y^{2} =$$

$$(S_{3}) \cong$$

	[(1)]	[(12)]	[(123)]
1	1	1	1
X	2	z ₂	2
Y	3	$1 + z_2$	Z 3
XY	6	$3z_{2}$	$2z_{3}$
X^2	4	$2z_{2}$	4
Y^2	9	$1 + 4z_2$	$3z_{3}$

$$X^2 = 2X$$
 $Y^2 = XY + Y$
 $\mathcal{R}(S_3) \cong$

	[(1)]	[(12)]	[(123)]
1	1	1	1
X	2	z ₂	2
Y	3	$1 + z_2$	Z 3
XY	6	$3z_{2}$	$2z_{3}$
X^2	4	$2z_2$	4
Y^2	9	$1 + 4z_2$	$3z_{3}$

$$X^2 = 2X$$
 $Y^2 = XY + Y$
 $\mathcal{R}(S_3) \cong \frac{\mathbb{Z}[X, Y]}{(X^2 - 2x, Y^2 - XY - Y)}$

- Other small/combinatorial categories
- Connections with Hochschild homology
- Making the construction functorial

Thank You

Boredom Update

- 1. Try $(z_3 + z_2) \cdot (z_5 + 2)$
- 2. What is $\tau(f)$ when $f(x) = 3x x^3$ on the set $\{0, \pm 1, \pm 2\}$?

Boredom Update

1. Try
$$(z_3 + z_2) \cdot (z_5 + 2) = z_{15} + z_{10} + 2z_3 + 2z_2$$

2. What is
$$\tau(f)$$
 when $f(x) = 3x - x^3$ on the set $\{0, \pm 1, \pm 2\}$?

Boredom Update

1. Try
$$(z_3 + z_2) \cdot (z_5 + 2) = z_{15} + z_{10} + 2z_3 + 2z_2$$

2. What is $\tau(f)$ when $f(x) = 3x - x^3$ on the set $\{0, \pm 1, \pm 2\}$?

Answer:
$$\tau(f) = 1 + z_2$$

