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Introduction
Partitions and Universal Traces

Main Idea

▶ The property τ(f ◦ g) = τ(g ◦ f ) completely characterizes the
trace of linear maps.

▶ In the categoy of finite sets this equation gives rise to a
trace-like invariant that assigns a partition to every
endomorphism.
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Universal Traces

We all know that
tr(AB) = tr(BA),

(∗)
but did you know that this gives a complete characterization?
Definition (Alt.)
The trace tr(−) is an invariant of endomorphisms in Vec that
satisfies the equation (∗), and is initial with respect to this property.
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Philosophizing
Universal Traces

That definition is so simple!

Perhaps this is why the trace is so important...

Does it have to be Vec?
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Let’s do FinSet
Universal Traces

Definition
The (universal) trace τ(−) is an invariant of endomorphisms in
FinSet that satisfies τ(f ◦ g) = τ(g ◦ f ), and is initial with respect
to this property.
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The Case of Finite Sets
Observations
▶ for an iso h, τ(f ) =

τ
(
h ◦

(
h−1 ◦ f

) )
= τ(h ◦ f ◦ h−1 )

▶ Every endomorphism f : X → X can be split as a surjection
s : X ↠ im(f ) followed by an injection i : im(f ) ↪→ X.
This gives

τ(f ) = τ(i ◦ s ) = τ(s ◦ i ) = τ
(
f |im(f )

)
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How to Calculate
The Case of Finite Sets

1. Take an endomorphism of a
finite set.

2. Restrict it to the largest
subset on which it acts by an
isomorphism.

3. Record the cycle type.
For this example, τ(f ) = (4, 3, 1)

• • • •

• • • •

• • • •
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Algebraic Structure
The Case of Finite Sets

P the set of all partitions inherits a natural semiring structure:
▶ τ(f ) + τ(g ) := τ(f ⊔ g )
▶ τ(f ) · τ(g ) := τ(f × g )
▶ 0 = () and 1 = (1).
▶ Let zn = τ

(
(n, · · · 1)

)
, then

(5, 2, 2, 1) = z5 + 2z2 + 1

.

▶ Prop: zn · zm = gzℓ.
• • • •

• • • •
EG:

z2 · z4 = 2z4
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Boredom Check
The Case of Finite Sets

1. Try (z3 + z2) · (z5 + 2)

2. What is τ(f ) when f(x ) = 3x − x3 on the set {0,±1,±2}?
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Finite Dynamics

Let f : X → X, for some finite set X.
▶ τ(f ) is the cycle type of the restriction of f to the largest

subset on which f acts by a permutation.
▶ In terms of dynamics, τ(f ) is a description of the stable set of

the map f.

Sean Sanford Indiana University
Partitions and Universal Traces

http://pages.iu.edu/~scsanfor/


http://pages.iu.edu/~scsanfor/

Introduction Universal Traces The Case of Finite Sets Finite Dynamics Applications to Group Theory Conclusion

Familiar Invariants
Finite Dynamics

Let Fn : P → N satisfy Fn(zm) = δn,m
▶ (

F1 ◦ τ
)

is
▶ (

Fn ◦ τ
)

is
▶ n ·

(
Fn ◦ τ

)
is

▶ ∑
d|n

d ·
(
Fd ◦ τ

)
is

▶
∞∑

n=1
n ·

(
Fn ◦ τ

)
is
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Counting Stable Sets
Finite Dynamics

Given |X | = n, how many stable sets are possible for the dynamical
system (X, f )?

Thinking of the system up to conjugacy, this means counting all
possible partitions of the form τ(f ):

n∑
k=1

p(k)

This is OEIS# A026905
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Applications to Group Theory
A G-representation (X, ρ ) in a category C is a monoid
homomorphism ρ : G → EndC(X).

▶ In classical representation theory, we consider G-reps in Vec.
▶ Using the trace, each G-rep (V, ρ ) in Vec produces a

character:
χρ = tr ◦ ρ : G → EndVec(V) → C.

▶ For any C, we can use its universal trace τC to extend
character theory to the category of G-reps in C.
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G-Sets
Applications to Group Theory

A G-representation (X, ρ) in FinSet is just a finite G-set.

▶ All G-sets decompose into orbits
▶ Each orbit is isomorphic to G/H, for some H ≤ G.
▶ Each orbit encodes a character
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Character Tables for S3
Applications to Group Theory

[1] [(12)] [(123)]
1 1 1 1
σ 1 −1 1
V 2 0 −1

[(1)] [(12)] [(123)]

1 =

S3/S3 1 1 1

X =

S3/C3 2 z2 2

Y =

S3/C2 3 1 + z2 z3

XY =

S1/1 6 3z2 2z3
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Character Tables for S3
Applications to Group Theory

[(1)] [(12)] [(123)]
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X 2

4 2z2 4

Y 2

9 1 + 4z2 3z3
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2X

Y 2 =

XY + Y

R(S3) ∼=

Z[X,Y](
X 2 − 2x , Y 2 − XY − Y

)
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Future Directions

▶ Other small/combinatorial categories
▶ Connections with Hochschild homology
▶ Making the construction functorial
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Thank You
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Boredom Update

1. Try (z3 + z2) · (z5 + 2)

= z15 + z10 + 2z3 + 2z2

2. What is τ(f ) when f(x ) = 3x − x3 on the set {0,±1,±2}?

Answer: τ(f ) = 1 + z2
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