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Abstract

In these notes we calculate the coend
X EFinSet
/ FinSet(X, X),

along with its natural map

X €FinSet
1] FinSet(X,X)—>/ FinSet(X, X),

X €eFinSet

which we interpret as a kind of trace. It turns out that this object is conve-
niently described as the set P of all partitions of all natural numbers.

Sections 1 through 5 are dedicated to proving the main theorem, and
section 6 follows up with some elementary applications. In section 7 we
describe a semiring structure on P that is related to 7. We go on to use this
structure in section 8 to analyze the category of finite G-sets in close analogy
with classical representation theory.

1 The Cowedge Condition and the Relation

)

Here we give a specific interpretation of the idea of coends that is relevant
to our situation. Let C and D be categories, and let K : C? x C — D be a
functor.



Definition. A morphism of the form

n: [[ K(C.C)—D

ceC

is called a cowedge under K if for all f : C' — C’ the following square

commutes:
K(f,0)

K(C',C) K(C,0)
K(C’,f)l J/??
K, ¢) —"—D

In these notes, we will be concerned with the situtation where C = FinSet,
D = Setand K (,) = FinSet(,). In this situation, FinSet(f, C) is usually writ-
ten as f* and is precomposition with f, while FinSet(C", f) is usually written
f« and is postcompostion with f. By making the appropriate substitutions
to the above diagram, we arrive at

FinSet(B, A) —L— FinSet(4, A)

f{ :
FinSet(B,B) ———— S
Note that if g € FinSet(B, A), then commutativity of the diagram implies

n(go f) =n(fog). This will be an important formula for us, so we give it a
name.

Definition. For the sake of these notes, a morphism

n: H FinSet(X, X) — S

X €eFinSet

is said to satisfy the cowedge condition if n(g o f) = n(f o g) whenever both
compositions are defined.

Thus we find that such a morphism out of the coproduct is a cowedge
under FinSet(,) if and only if it satisfies the cowedge condition.



Definition. A coend is an initial cowedge. This means that 7 is a coend of
K if for every cowedge 1 under K there is a unique map ¢ such that n = (or.
By abuse of notation the term coend also refers to the object at the codomain
of the cowedge, and for this object we use the notation

cec
K(C,0),

where the symbol C' acts as an index or ‘dummy variable’ similar to the
notation used in products and coproducts.

The conclusion of these notes is that
X €FinSet
/ FinSet(X, X) = P := {all partitions of all natural numbers}.

First we begin by examining the consequences of the cowedge condition.
If n satisfies the cowedge condition, then n maps f o g and go f to the same
element. This suggests investigation of the relation ~y where ¢ ~ v if there
exist f, g such that ¢ = fog and ¥ = go f. This relation is reflexive and
symmetric, but it is not transitive, and thus not an equivalence relation.
However there is a canonical way to fixing this issue.

Definition. The relation ~ on ] FinSet(X, X) is defined to be the
X eFinSet
transitive closure of ~y. This means that ¢ ~ 1) if there exists a sequence of

morphisms (f;)%_, such that ¢ ~¢ fi, fi ~o fiz1 for i < k and fi ~q 1.

with this definition, it is not difficult to see that for any 7 satisfying the
cowedge condition, f ~ g implies n(f) = n(g).

2 Reduction to Isomorphisms

Using the epi-monic factorization in FinSet, we can write any map f €
FinSet(A, A) as f = moe where e : A — im(f) and m : im(f) — A.
Knowing that f can be decomposed in this way tells us that f ~ e om, and
this map e om € FinSet(im(f),im(f)) is f|im(s). This allows us to prove our
first proposition.

Proposition 2.1. For every endomorphism f in FinSet, there is an isomor-

phism f such that f ~ f.



The proof of this proposition will first require a lemma:

Lemma 2.1.1. For every endomorphism f € FinSet(A, A) in FinSet there is a
natural number N € N such that f|imny = flimsvy for alln > N. Moreover,
this common map is an isomorphism, and if A # 0, then im(fN) # 0.

Proof of lemma. Firstly, for f : A — A, we have that im(f) C A. This
implies that im(f?) = f(im(f)) C f(A) = im(f), and by induction, we have
a descending sequence of subsets:

- Cim(f) Cim(f*) C - Cim(f?) Cim(f) C A

If A= (, then f was an isomorphism to begin with, and the sequence
above is constant. Assume then that A # (). Since the image of a nonempty
set is nonempty, every term in this sequence will always have at least one
element.

If it happens that fli,(sv) is an isomorphism, then im(fN*) = f(im(fV)) =
im(f"), so by induction im(f") = im(f") for all n > N.

For the sake of contradiction, suppose that for all n, flimm) is not an
isomorphism. Since A is finite, f|um(sm) is not surjective for any n. Thus we
have that #(im(f)) < #(A) — 1, and by induction #(im(f")) < #(A) — n.
If #(A) = N, then #(im(f")) < #(4) — N = 0, which contradicts our
previous observation that 1 < #(im(f))

O

We can now proceed to prove Proposition 2.1.

Proof of Proposition. Given f € FinSet(A, A), define

p(f) == flim¢) € FinSet(im(f),im(f)).

We have already seen that f ~ p(f), and this implies that p(f) ~
p(p(f)) =: P*(f). Since ~ is transitive, f ~ p?(f) and by iduction f ~ p™(f)
for all n > 1. By the lemma, it will suffice to prove that p"(f) = fl|im(sn) for
all n > 1.



Note that p(f) := flin(s1), so our base case is covered by definition.
Suppose that p*(f) = lim(ry for all & < n. We calculate

P ) =0 (0" ()
= 0 (Flim(sm))
(flim(sm) ’
= (flim(sm)
= (flim(sm)
= (flim(rm)
= f’im(f"’H .

im fllm(f”)

’flmf"

)
)
)
)

11’[1 fn+1)

Thus by induction p"(f) = flim) for all n. Using the lemma, define

f := pN(f) where N is the first number such that [ lim(vy is an isomorphism.
[

3 The Maps 7y and 7

Here we describe some important morphisms between relevent objects, and
examine their properties. For any f € Autpinser(A), the subgroup (f) gener-
ated by f is a cyclic group that acts on A. Consider the orbit space

Yipy

By ordering the sizes of the orbits from greatest to least, we obtain a
partition of the number |A|. Let the partition thus obtained from f be
denoted 7o(f). We have just described a map

H Aut(X) — P := {all partitions of all natural numbers}.
X eFinSet

By the universal property of the coproduct, the inclusions ix : Aut(X) —
FinSet(X, X') form a cocone over the summands, and determine a unique map

H Aut(X) — H FinSet(X, X),

X €FinSet X €FinSet



which is ix on the X component. The construction of Proposition 2.1 shows
that we have a surjection r : f +— f which goes in the other direction, and
satisfies r o4 = id.

We now make what is possibly the most important definition in these
notes.

Definition. The trace map 7 is the composition 75 o . Given any map
f € FinSet(A, A) the partition 7(f) € P is called the trace of f.

Proposition 3.1. The trace map 7 is a cowedge under the bifunctor FinSet( ).

Proof of Proposition. It will suffice to prove that 7y o r satisfies the cowedge
condition. Suppose then that f : A — B and g : B — A are any two
functions of the finite sets A and B. By Lemma 2.1.1 there are integers Ny
and N, such that

r(fog)=(fo g)’im((fog)Nl)a &
(go f)’im((gof)Nz)-

<
Y
N
o
~
N~—
Il

Now set
N := maX{Nl,Ng}
Ag:=1im((go f)V)
By: = im((fog)N).

We calculate:

By = (f OQ)N B)
(fog)"(B)

= (folgof)¥ og)(B)
= (folgo/)Y)(9(B))
C (folgoe HM)(A)
= ((fog)™¥ o f)(4)
= (fog)" (f(4))
C (fog)™(B) = B
_—



which shows that f|a, : Ag — By is surjective. We also have that

g|30 Of|Ao = (go f)’Ao = T(gO f) is iso,
and this forces f|4, to be injective and hence an isomorphism. Similar argu-
ments show that g|p, is also an isomorphism. For brevity let us denote these
maps fo and go.
Now, notice that
r(feg)=fog = foog, &
rigof)=gof = goofo
This implies that we have 7(f o g)* = idp, if and only if 7(go f)* = id,.
This fact then tells us that (r(fog)) = (r(go f)), so let us denote this

common cyclic group by G = (z). Interpreting Ag and By as G-sets shows
us another important fact:

z.fola)=1r(fog (fo a))
= foogo ( )
= fo( oofo )
= fo(r(g© f)(a))
= fo(z.a)

fo is equivariant!

a
a

Since fp is an equivariant isomorphism, it follows that Ay, and By are
isomorphic as G-sets, and hence have identical orbit structure. In light of
this, we conclude that

(roor)(fog)=(rnor)(gof),

which is precisely the cowedge condition. [

4 The Splitting o of 7

For every n € N, there is a set n:= {1,...,n} (and 0 := ). The symmetric
groups are defined to be the automorphism groups of these sets: S, :=
Aut(n). The disjoint union of these S,, form an important subset:

]O_o[sn LT[ FinSet(X, X).

n=0 X €FinSet



whose inclusion map we denote by j when necessary.
Given a partition I € P of n, we will construct a permutation o(I) €
S, that satisfies 7(o(I)) = I. Assuming the partation is given as I =

(n1,ng,- -+ ,n,) with n; > n;y1, set ng = 0 and define
r—1 k k k
J(I):H<1+ n; 2+Zni nk+1+2ni>.
k=0 i=1 i=1 i=1

Example 4.1. If T = (3,2,2,1), then o(I) = (1 2 3)(4 5)(6 7)(8) € Ss.
Proposition 4.1. The map 7o 0 = idp, and for any v € S,,, there is some

v € S, such that

(007‘)(1/) :'yoz/oy_l.

Proof of Proposition. The first statement is by construction. The second fol-
lows from the classical result of finite group theory that any two permutations
are conjugate if and only if they have the same cycle decomposition. O

5 Verification of the Universal Property

Before proving that 7 satisfies the universal property of the coend, we will
need a lemma.

Lemma 5.0.1. If two cowedges agree on the subset [, S,, then they are
equal. i.e. for any two cowedges n and (,

noj=¢oj = n=¢.

Proof of Lemma. Suppose n(v) = ((v) forallv € [], S,. Let f € FinSet(A, A)
be any endomorphism of a finite set A. By Proposition 2.1, f is an auto-
morphism of Ay := im(f") for some N. If #(Ag) = k, then there is some
bijection ¢ : Ag — k. Note that

f o~ f = (fogzﬁ_l)ogzﬁ ~ gzﬁofogzﬁ_l € Sk.
Using this, we see that
n(f) = n(¢ofod™) = ¢(pofoo™) = ((f).

Since f was arbitrary, the two cowedges must be equal. [

8



Theorem 5.1. The map

7o J] FinSet(X,X) — P

X €FinSet

satisfies the universal property, and therefore
X €FinSet
/ FinSet(X, X) = P.

Proof of Theorem. Let n be a cowedge under FinSet(,). Define £ := noo.
We will show that n = £ o 7 and that any other map with this property is
equal to &. Firstly suppose that v € S. By Lemma 4.1, there is some v € S
such that (0 o7)(v) =yovo~vy~!. Using this and the cowedge condition, we
calculate:

(or)(w)=n((coT)(v )

Since n(v) = ((o7)(v) and v € Si was an arbitrary permutation, by Lemma
5.0.1 it must be the case that n =& o 7.

Secondly, suppose there was some other ¢ such that (o7 =n=E¢o7. By
Proposition 4.1 we find that

(=(oidp=CoTo0=noc=EfoTo0=¢oidp =¢.

Thus every cowedge under FinSet( , ) factors uniquely through 7, which is the
universal property we set out to prove. Finally, note that the uniqueness of
the factorization implies that the object f X€Finet FinSet(X, X)) is unique up
to unique isomorphism, and we can conclude that

X eFinSet

P = / FinSet(X, X).

canonical



6 Some Applications

By the universal property of the coend, any function with domain P will
yield an invariant of endomorphisms in FinSet, and all such invariants that
satisfy the cowedge condition arise in this way.

Example 6.1. Let F; : P — N be the map defined by
Fi(I) = the total number of 1s appearing in I.

Using this function we obtain the invariant F; o 7 which sends f to the
number of fixed points of f.
Generalizing this, we obtain

Example 6.2. Let F, : P — N be the map defined by
F,(I) = the total number of ns appearing in 1.

Using this function we obtain the invariant Fj, o 7 which sends f to the
number of distinct strict n-cycles of points of f, i.e. the number of disjoint
subsets {x;}"; of dom(f) on which f acts as an n-cycle. By multiplying
this quantity by n we obtain n - (F,, o 7)(f) the number of strictly n-periodic
points of f.

Example 6.3. Let T: P — N be the map defined by
T(I) = the sum of all terms appearing in I.

Using this function we obtain the invariant 7' o 7 which sends f to the
number of periodic points of f. Of course, since f is an endomorphism of a
finite set, the collection of all periodic points is precisely the largest subset
of dom(f) on which f is an isomorphism. Thus (7 o 7)(f) is exactly the
cardinality of this set. Since every periodic point of f is strictly n-periodic
for some n > 1, we have that

(Tor)(f) = Y n-(Fuor)(f),

where the sum is well defined, because all but finitely many terms are zero.

10



The set ][ FinSet(X, X) has a natural commutative monoid structure
coming from the operation (f, g) — f L g. The set P has a natural commu-
tative monoid structure arising from the operation of juxtaposition (7, .J)
I+J. The partition I+ J has all the terms from I and J together, rearranged
if necessary. Using the techniques we have developed, it is not hard to show
that 7 acts as a homomorphism of these monoids, i.e. that

T(fUg)=7(f)+7(9).

7 A Semiring Structure on P

Here we exposit on further algebraic structure that exists on P, namely that
of multiplication, and discuss how it interacts with juxtaposition to endow
P with the structure of a commutative, unital semiring.

Definition. For the remainder of the text, for every n € N with n > 1 we
will use the notation
zp=(n) € P

for the partition of n consisting of just n itself.

The empty partition acts as an identity with respect to juxtaposition,
and so we will prefer to abbreviate it as Op or simply 0 when no confusion
should arise.

With this notation in place, note that any partition can be written as a
finite sum of the z,:

Example 7.1.
(573,2,2,271,1) = Z5+23+322+221.

Given any two partitions I and J € P, define the product partition I - J
to be

Definition.
I-J:=71(c(I) x o(J])).

In order to get a better sense of what this definition implies, we carry out
the following calculation:

11



Proposition 7.1. Let { = lcd(n,m) and g = gcd(n,m) be the least common
multiple and greatest common divisor respectively of n and m. The product
of z, and z,, is given by

Zn Zm = 2.
Proof. Directly from the definition, we have

Zn 2t = T(O’(Zn> X a(zm))
{12 X 12 )

It will suffice to show that the cycle decomposition of this product map
consists of g disjoint ¢-cycles. Without loss of generality, assume that n < m.
The first cycle will begin at the point (1,1) and must return to this point.
In other words, the last point in the cycle will be (n,m). The very first time
that the cycle will arrive at (n,m) will be at the £*® step, so this must be an
(-cycle.

Now suppose that 0 < k < g. If the point (1,1 + k) is in this first cycle,
then there is some multiple tn of n such that

tn =k modm

=

ds € Z, tn=k+ sm
_—
tn—sm==k
_—

glk 7

Thus each of the points (1,1+ k) for 0 < k < g lies outside of the first cycle.
In fact, this argumet shows that all of these points lie in distinct cycles.
From here it is easy to see that each of these must be ¢-cycles and that these

12



account for all points in n x m. Thus we have

(12 - (12---m))

g—1

zn-zm.—r

(-cycle containing (1,1 4+ k))
k=0

,_./\/—\

m

T(E—Cycle containing (1,1 + k))

I
(]

i
= o

(0)

(]

[
NE
gt

]

Note. In the category FinSet, cartesian products distribute over coproducts,
and thus Proposition 7.1 completely determines the product structure on P.
In particular, it shows that z; = 1p.

Corollary 7.1.1. As a commutative semiring, (P,+,0p, -, 1p) is isomorphic
to

P = N[22723,24,...]/N

where the relation ~ is generated by z, - z, ~ g z¢ as dictated by Proposition
7.1.

Example 7.2.
(4,3,3,1)-(5,2,2,2) = (24 + 223 + 1) - (25 + 322)
= 290 + 22’15 + z5 + 624 + 626 + 322

= Zog + 2215 + 62’6 + z5 + 624 + 322
— (20,15, 15,6,6,6,6,6,6,5,4,4,4,4,4,4,2,2,2).

8 Applications to Finite G-Sets
Let p: G — Aut(X) be an action of a finite group G on a finite set X. Using

our huristic sense that 7 is a kind of trace, we follow representation theory
and define the character xx : G — P of X to be

13



Definition.
xx(9) = 7(p(9)).

Since 7 satisfies the cowedge contition, it is immediate that xx is a class
function (it is constant on conjugacy classes). As it turns out, we can say
much more:

Theorem 8.1. The map x : [X] — xx defines a unital semiring homomor-
phism from the semiring of isomorphism classes of finite G-sets R to the

semiring PG .. of class functions from G to P.

Proof. In order to begin making sense of this statement, it is necessary to
understand the semiring structure on R and P$,... The latter is simply
defined by pointwise addition and multiplication, so we will focus on the
former. Since the product and coproduct of G-sets are respectively unique

up to unique isomorphism, the definitions

[(X]+ [X']:=[XUX'], and
[X] - [XT] = [X x X]

endow R with a well-defined product and sum. The zero object Ox is easily
seen to be the class [()] with its obvious G-action, and the multiplicative
identity 1z is the class of the G-set consisting of a single point with the
trivial action. Verification of distributivity follows from distributivity for
actual G-sets and is purely formal.

Now suppose that ¢ : X — X’ is an isomorphism of G-sets. Then we
have that for any g € G,

xx(9) =7(p(9))
T(pop(g)op™)
=1(¢'(9))

= xx(9).

Thus x : [X] — xx is well-defined.
If v: G — Aut(Y) is another G-action, then

g— (p(g)UV(g)rXUYHXuY>

14



defines an action pUv : G — Aut(X UY), and we have

Xxuy(9) = T(P
(

We can also construct the product

gH(ﬂ(g)XV(g)rXXY*XXY)

which defines an action p x v : G — Aut(X x Y). Using the definition of
multiplication in P together with Proposition 4.1, we find that

Xxxv(9) =7(p
g
o
[

(9) x v(9))
o O’(T(,O(g))) 0y X7yt o U<T(V(g))) o ’Yz)
Y X 2) o (U<T(P(9))> X U<T(V<g)))> o (m X 72))
X a(r(u(g))))

(p(9)) - 7(v(yg
= xx(9) XY(g)-

In other words, we have that

(IX]) + x([¥1), and
([X7) - x(I¥])-
The fact that y takes 1z — (g — 1p) and Og — (g — Op) are easy to verify,

and this completes the proof.
O

Let us apply this theory to the group S3 to show what the equivalent
of a character table would be in this setting. The first thing to notice is
that in this setting, complete reducibility or semisimplicity is the statement
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that every finite G-set can be written uniquely as a disjoint union of orbits.
An orbit is just a transitive G-set, and these are the irreducible objects in
the category of G-sets. Every orbit is necessarily of the form G/H for some
subgroup H. In the case G = Sj3, there are only 4 isomorphism classes of
orbits and they are given below:

id [(1 2)]conj [(1 2 3)]Conj
12 1[S;5/S5] 1 1 1
X =S5/ ((123))] || 2 2 2
Y :=[S3/((12))] || 3| 1+ 2 23
S = [S3] 6 329 223

In the above table, the rows correspond to (isomorphism classes of) orbits
and the columns correspond to conjugacy classes of elements of S3. The
entries are the values of the character of the row applied to any element of
the conjugacy class of that column. Thanks to Theorem 8.1, by multiplying
entries vertically we obtain the characters of the product G-sets. Here are
some examples:

id | [(12)]eon; | [(123)]cony
XY 6 322 22’3
X=X -X| 4 229 4
YZZYY 9 1—|—422 323

By semisimplicity, the set {1, X,Y,S} forms an N-basis for R, and we can
use this basis together with the above tables to find that

XYy =S5
X?=2X
Y2=Y +6S.

The above shows that R is isomorphic to a quotient of N[.X, Y. Specifically,
we have

Theorem 8.2. For G = S3, the semiring R of isomorphism classes of G-sets
18

~ N[X,Y
R == NEX, %X%ﬂXﬂﬂ:XY+H

where the angle brackets denote the congruence relation generated by these
relations.

16



