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Abstract
In these notes we calculate the coend∫ X∈FinSet

FinSet(X,X),

along with its natural map

τ :
⨿

X∈FinSet

FinSet(X,X) !

∫ X∈FinSet
FinSet(X,X),

which we interpret as a kind of trace. It turns out that this object is conve-
niently described as the set P of all partitions of all natural numbers.

Sections 1 through 5 are dedicated to proving the main theorem, and
section 6 follows up with some elementary applications. In section 7 we
describe a semiring structure on P that is related to τ . We go on to use this
structure in section 8 to analyze the category of finite G-sets in close analogy
with classical representation theory.

1 The Cowedge Condition and the Relation
∼

Here we give a specific interpretation of the idea of coends that is relevant
to our situation. Let C and D be categories, and let K : Cop × C ! D be a
functor.
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Definition. A morphism of the form

η :
⨿
C∈C

K(C,C) ! D

is called a cowedge under K if for all f : C ! C ′ the following square
commutes:

K(C ′, C) K(C,C)

K(C ′, C ′) D

K(f,C)

K(C′,f) η

η

In these notes, we will be concerned with the situtation where C = FinSet,
D = Set andK( , ) = FinSet( , ). In this situation, FinSet(f, C) is usually writ-
ten as f ∗ and is precomposition with f , while FinSet(C ′, f) is usually written
f∗ and is postcompostion with f . By making the appropriate substitutions
to the above diagram, we arrive at

FinSet(B,A) FinSet(A,A)

FinSet(B,B) S

f∗

f∗ η

η

Note that if g ∈ FinSet(B,A), then commutativity of the diagram implies
η(g ◦ f) = η(f ◦ g). This will be an important formula for us, so we give it a
name.

Definition. For the sake of these notes, a morphism

η :
⨿

X∈FinSet

FinSet(X,X) ! S

is said to satisfy the cowedge condition if η(g ◦ f) = η(f ◦ g) whenever both
compositions are defined.

Thus we find that such a morphism out of the coproduct is a cowedge
under FinSet( , ) if and only if it satisfies the cowedge condition.
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Definition. A coend is an initial cowedge. This means that τ is a coend of
K if for every cowedge η under K there is a unique map ζ such that η = ζ ◦τ .
By abuse of notation the term coend also refers to the object at the codomain
of the cowedge, and for this object we use the notation∫ C∈C

K(C,C),

where the symbol C acts as an index or ‘dummy variable’ similar to the
notation used in products and coproducts.

The conclusion of these notes is that∫ X∈FinSet
FinSet(X,X) ∼= P := {all partitions of all natural numbers}.

First we begin by examining the consequences of the cowedge condition.
If η satisfies the cowedge condition, then η maps f ◦ g and g ◦ f to the same
element. This suggests investigation of the relation ∼0 where ϕ ∼0 ψ if there
exist f, g such that ϕ = f ◦ g and ψ = g ◦ f . This relation is reflexive and
symmetric, but it is not transitive, and thus not an equivalence relation.
However there is a canonical way to fixing this issue.

Definition. The relation ∼ on
⨿

X∈FinSet
FinSet(X,X) is defined to be the

transitive closure of ∼0. This means that ϕ ∼ ψ if there exists a sequence of
morphisms (fi)

k
i=1 such that ϕ ∼0 f1, fi ∼0 fi+1 for i < k and fk ∼0 ψ.

with this definition, it is not difficult to see that for any η satisfying the
cowedge condition, f ∼ g implies η(f) = η(g).

2 Reduction to Isomorphisms
Using the epi-monic factorization in FinSet, we can write any map f ∈
FinSet(A,A) as f = m ◦ e where e : A ↠ im(f) and m : im(f) ↪! A.
Knowing that f can be decomposed in this way tells us that f ∼ e ◦m, and
this map e ◦m ∈ FinSet(im(f), im(f)) is f |im(f). This allows us to prove our
first proposition.

Proposition 2.1. For every endomorphism f in FinSet, there is an isomor-
phism f̂ such that f ∼ f̂ .
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The proof of this proposition will first require a lemma:

Lemma 2.1.1. For every endomorphism f ∈ FinSet(A,A) in FinSet there is a
natural number N ∈ N such that f |im(fn) = f |im(fN ) for all n ≥ N . Moreover,
this common map is an isomorphism, and if A ̸= ∅, then im(fN) ̸= ∅.

Proof of lemma. Firstly, for f : A ! A, we have that im(f) ⊆ A. This
implies that im(f 2) = f(im(f)) ⊆ f(A) = im(f), and by induction, we have
a descending sequence of subsets:

· · · ⊆ im(fk+1) ⊆ im(fk) ⊆ · · · ⊆ im(f 2) ⊆ im(f) ⊆ A

If A = ∅, then f was an isomorphism to begin with, and the sequence
above is constant. Assume then that A ̸= ∅. Since the image of a nonempty
set is nonempty, every term in this sequence will always have at least one
element.

If it happens that f |im(fN ) is an isomorphism, then im(fN+1) = f(im(fN)) =
im(fN), so by induction im(fn) = im(fN) for all n ≥ N .

For the sake of contradiction, suppose that for all n, f |im(fn) is not an
isomorphism. Since A is finite, f |im(fn) is not surjective for any n. Thus we
have that #(im(f)) ≤ #(A) − 1, and by induction #(im(fn)) ≤ #(A) − n.
If #(A) = N , then #(im(fN)) ≤ #(A) − N = 0, which contradicts our
previous observation that 1 ≤ #(im(fN)) � .

We can now proceed to prove Proposition 2.1.

Proof of Proposition. Given f ∈ FinSet(A,A), define

ρ(f) := f |im(f) ∈ FinSet
(
im(f), im(f)

)
.

We have already seen that f ∼ ρ(f), and this implies that ρ(f) ∼
ρ(ρ(f)) =: ρ2(f). Since ∼ is transitive, f ∼ ρ2(f) and by iduction f ∼ ρn(f)
for all n ≥ 1. By the lemma, it will suffice to prove that ρn(f) = f |im(fn) for
all n ≥ 1.
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Note that ρ(f) := f |im(f1), so our base case is covered by definition.
Suppose that ρk(f) = f |im(fk) for all k ≤ n. We calculate

ρn+1(f) : = ρ (ρn(f))

= ρ
(
f |im(fn)

)
=
(
f |im(fn)

) ∣∣
im(f |im(fn))

=
(
f |im(fn)

) ∣∣
f |im(fn)(im(fn))

=
(
f |im(fn)

) ∣∣
f(im(fn))

=
(
f |im(fn)

) ∣∣
im(fn+1)

= f |im(fn+1).

Thus by induction ρn(f) = f |im(fn) for all n. Using the lemma, define
f̂ := ρN(f) where N is the first number such that f |im(fN ) is an isomorphism.

3 The Maps τ0 and τ

Here we describe some important morphisms between relevent objects, and
examine their properties. For any f ∈ AutFinSet(A), the subgroup ⟨f⟩ gener-
ated by f is a cyclic group that acts on A. Consider the orbit space

A⧸⟨f⟩.

By ordering the sizes of the orbits from greatest to least, we obtain a
partition of the number |A|. Let the partition thus obtained from f be
denoted τ0(f). We have just described a map

τ0 :
⨿

X∈FinSet

Aut(X) ! P := {all partitions of all natural numbers}.

By the universal property of the coproduct, the inclusions iX : Aut(X) ↪!
FinSet(X,X) form a cocone over the summands, and determine a unique map

i :
⨿

X∈FinSet

Aut(X) !
⨿

X∈FinSet

FinSet(X,X),
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which is iX on the X component. The construction of Proposition 2.1 shows
that we have a surjection r : f 7! f̂ which goes in the other direction, and
satisfies r ◦ i = id.

We now make what is possibly the most important definition in these
notes.

Definition. The trace map τ is the composition τ0 ◦ r. Given any map
f ∈ FinSet(A,A) the partition τ(f) ∈ P is called the trace of f .

Proposition 3.1. The trace map τ is a cowedge under the bifunctor FinSet( , ).

Proof of Proposition. It will suffice to prove that τ0 ◦ r satisfies the cowedge
condition. Suppose then that f : A ! B and g : B ! A are any two
functions of the finite sets A and B. By Lemma 2.1.1 there are integers N1

and N2 such that

r(f ◦ g) = (f ◦ g)|im((f◦g)N1 ), &

r(g ◦ f) = (g ◦ f)|im((g◦f)N2 ).

Now set

N : = max{N1, N2}
A0 : = im

(
(g ◦ f)N

)
B0 : = im

(
(f ◦ g)N

)
.

We calculate:

B0 = (f ◦ g)N(B)

= (f ◦ g)N+1(B)

=
(
f ◦ (g ◦ f)N ◦ g

)
(B)

=
(
f ◦ (g ◦ f)N

)(
g(B)

)
⊆
(
f ◦ (g ◦ f)N

)
(A)

=
(
(f ◦ g)N ◦ f

)
(A)

= (f ◦ g)N
(
f(A)

)
⊆ (f ◦ g)N

(
B
)
= B0

=⇒
B0 =

(
f ◦ (g ◦ f)N

)
(A) = f(A0),
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which shows that f |A0 : A0 ! B0 is surjective. We also have that
g|B0 ◦ f |A0 = (g ◦ f)|A0 = r(g ◦ f) is iso,

and this forces f |A0 to be injective and hence an isomorphism. Similar argu-
ments show that g|B0 is also an isomorphism. For brevity let us denote these
maps f0 and g0.

Now, notice that

r(f ◦ g) = f̂ ◦ g = f0 ◦ g0, &

r(g ◦ f) = ĝ ◦ f = g0 ◦ f0.

This implies that we have r(f ◦ g)k = idB0 if and only if r(g ◦ f)k = idA0 .
This fact then tells us that ⟨r(f ◦ g)⟩ ∼= ⟨r(g ◦ f)⟩, so let us denote this
common cyclic group by G = ⟨z⟩. Interpreting A0 and B0 as G-sets shows
us another important fact:

z.f0(a) = r(f ◦ g)
(
f0(a)

)
= (f0 ◦ g0)

(
f0(a)

)
= f0

(
(g0 ◦ f0)(a)

)
= f0

(
r(g ◦ f)(a)

)
= f0(z.a)

∴ f0 is equivariant!
Since f0 is an equivariant isomorphism, it follows that A0 and B0 are

isomorphic as G-sets, and hence have identical orbit structure. In light of
this, we conclude that

(τ0 ◦ r)(f ◦ g) = (τ0 ◦ r)(g ◦ f),

which is precisely the cowedge condition.

4 The Splitting σ of τ
For every n ∈ N, there is a set n := {1, . . . , n} (and 0 := ∅). The symmetric
groups are defined to be the automorphism groups of these sets: Sn :=
Aut(n). The disjoint union of these Sn form an important subset:

∞⨿
n=0

Sn

j
↪−!

⨿
X∈FinSet

FinSet(X,X).
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whose inclusion map we denote by j when necessary.
Given a partition I ∈ P of n, we will construct a permutation σ(I) ∈

Sn that satisfies τ
(
σ(I)

)
= I. Assuming the partation is given as I =

(n1, n2, · · · , nr) with ni ≥ ni+1, set n0 = 0 and define

σ(I) =
r−1∏
k=0

(
1 +

k∑
i=1

ni 2 +
k∑

i=1

ni . . . nk+1 +
k∑

i=1

ni

)
.

Example 4.1. If I = (3, 2, 2, 1), then σ(I) = (1 2 3)(4 5)(6 7)(8) ∈ S8.

Proposition 4.1. The map τ ◦ σ = idP , and for any ν ∈ Sn, there is some
γ ∈ Sn such that

(σ ◦ τ)(ν) = γ ◦ ν ◦ γ−1.

Proof of Proposition. The first statement is by construction. The second fol-
lows from the classical result of finite group theory that any two permutations
are conjugate if and only if they have the same cycle decomposition.

5 Verification of the Universal Property
Before proving that τ satisfies the universal property of the coend, we will
need a lemma.

Lemma 5.0.1. If two cowedges agree on the subset
⨿

n Sn, then they are
equal. i.e. for any two cowedges η and ζ,

η ◦ j = ζ ◦ j =⇒ η = ζ.

Proof of Lemma. Suppose η(ν) = ζ(ν) for all ν ∈
⨿

n Sn. Let f ∈ FinSet(A,A)

be any endomorphism of a finite set A. By Proposition 2.1, f̂ is an auto-
morphism of A0 := im(fN) for some N . If #(A0) = k, then there is some
bijection ϕ : A0 ! k. Note that

f ∼ f̂ =
(
f̂ ◦ ϕ−1

)
◦ ϕ ∼ ϕ ◦ f̂ ◦ ϕ−1 ∈ Sk.

Using this, we see that

η(f) = η
(
ϕ ◦ f̂ ◦ ϕ−1

)
= ζ

(
ϕ ◦ f̂ ◦ ϕ−1

)
= ζ(f).

Since f was arbitrary, the two cowedges must be equal.
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Theorem 5.1. The map

τ :
⨿

X∈FinSet

FinSet(X,X) ! P

satisfies the universal property, and therefore∫ X∈FinSet
FinSet(X,X) ∼= P.

Proof of Theorem. Let η be a cowedge under FinSet( , ). Define ξ := η ◦ σ.
We will show that η = ξ ◦ τ and that any other map with this property is
equal to ξ. Firstly suppose that ν ∈ Sk. By Lemma 4.1, there is some γ ∈ Sk

such that (σ ◦ τ)(ν) = γ ◦ ν ◦ γ−1. Using this and the cowedge condition, we
calculate:

(ξ ◦ τ) (ν) = η
(
(σ ◦ τ)(ν)

)
= η

(
γ ◦ ν ◦ γ−1

)
= η(ν).

Since η(ν) = (ξ ◦ τ)(ν) and ν ∈ Sk was an arbitrary permutation, by Lemma
5.0.1 it must be the case that η = ξ ◦ τ .

Secondly, suppose there was some other ζ such that ζ ◦ τ = η = ξ ◦ τ . By
Proposition 4.1 we find that

ζ = ζ ◦ idP = ζ ◦ τ ◦ σ = η ◦ σ = ξ ◦ τ ◦ σ = ξ ◦ idP = ξ.

Thus every cowedge under FinSet( , ) factors uniquely through τ , which is the
universal property we set out to prove. Finally, note that the uniqueness of
the factorization implies that the object

∫ X∈FinSet
FinSet(X,X) is unique up

to unique isomorphism, and we can conclude that

P ∼=
canonical

X∈FinSet∫
FinSet(X,X).
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6 Some Applications
By the universal property of the coend, any function with domain P will
yield an invariant of endomorphisms in FinSet, and all such invariants that
satisfy the cowedge condition arise in this way.

Example 6.1. Let F1 : P ! N be the map defined by

F1(I) = the total number of 1s appearing in I.

Using this function we obtain the invariant F1 ◦ τ which sends f to the
number of fixed points of f .

Generalizing this, we obtain

Example 6.2. Let Fn : P ! N be the map defined by

Fn(I) = the total number of n s appearing in I.

Using this function we obtain the invariant Fn ◦ τ which sends f to the
number of distinct strict n-cycles of points of f , i.e. the number of disjoint
subsets {xi}ni=1 of dom(f) on which f acts as an n-cycle. By multiplying
this quantity by n we obtain n · (Fn ◦ τ)(f) the number of strictly n-periodic
points of f .

Example 6.3. Let T : P ! N be the map defined by

T (I) = the sum of all terms appearing in I.

Using this function we obtain the invariant T ◦ τ which sends f to the
number of periodic points of f . Of course, since f is an endomorphism of a
finite set, the collection of all periodic points is precisely the largest subset
of dom(f) on which f is an isomorphism. Thus (T ◦ τ)(f) is exactly the
cardinality of this set. Since every periodic point of f is strictly n-periodic
for some n ≥ 1, we have that

(T ◦ τ)(f) =
∞∑
n=1

n · (Fn ◦ τ)(f),

where the sum is well defined, because all but finitely many terms are zero.
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The set
⨿

X FinSet(X,X) has a natural commutative monoid structure
coming from the operation (f, g) 7! f ⊔ g. The set P has a natural commu-
tative monoid structure arising from the operation of juxtaposition (I, J) 7!
I+J . The partition I+J has all the terms from I and J together, rearranged
if necessary. Using the techniques we have developed, it is not hard to show
that τ acts as a homomorphism of these monoids, i.e. that

τ(f ⊔ g) = τ(f) + τ(g).

7 A Semiring Structure on P

Here we exposit on further algebraic structure that exists on P , namely that
of multiplication, and discuss how it interacts with juxtaposition to endow
P with the structure of a commutative, unital semiring.

Definition. For the remainder of the text, for every n ∈ N with n ≥ 1 we
will use the notation

zn = (n) ∈ P

for the partition of n consisting of just n itself.

The empty partition acts as an identity with respect to juxtaposition,
and so we will prefer to abbreviate it as 0P or simply 0 when no confusion
should arise.

With this notation in place, note that any partition can be written as a
finite sum of the zn:

Example 7.1.

(5, 3, 2, 2, 2, 1, 1) = z5 + z3 + 3z2 + 2z1.

Given any two partitions I and J ∈ P , define the product partition I · J
to be

Definition.

I · J := τ
(
σ(I)× σ(J)

)
.

In order to get a better sense of what this definition implies, we carry out
the following calculation:
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Proposition 7.1. Let ℓ = lcd(n,m) and g = gcd(n,m) be the least common
multiple and greatest common divisor respectively of n and m. The product
of zn and zm is given by

zn · zm = g zℓ.

Proof. Directly from the definition, we have

zn · zm : = τ
(
σ(zn)× σ(zm)

)
= τ
(
(1 2 · · · n)× (1 2 · · · m)

)
.

It will suffice to show that the cycle decomposition of this product map
consists of g disjoint ℓ-cycles. Without loss of generality, assume that n ≤ m.
The first cycle will begin at the point (1, 1) and must return to this point.
In other words, the last point in the cycle will be (n,m). The very first time
that the cycle will arrive at (n,m) will be at the ℓth step, so this must be an
ℓ-cycle.

Now suppose that 0 < k < g. If the point (1, 1 + k) is in this first cycle,
then there is some multiple tn of n such that

tn ≡ k mod m

=⇒
∃s ∈ Z, tn = k + sm

=⇒
tn− sm = k

=⇒

g | k �
Thus each of the points (1, 1+ k) for 0 < k < g lies outside of the first cycle.
In fact, this argumet shows that all of these points lie in distinct cycles.
From here it is easy to see that each of these must be ℓ-cycles and that these

12



account for all points in n×m. Thus we have

zn · zm : = τ
(
(1 2 · · · n)× (1 2 · · · m)

)
= τ

(
g−1⊔
k=0

ℓ-cycle containing (1, 1 + k)

)

=

g−1∑
k=0

τ
(
ℓ-cycle containing (1, 1 + k)

)
=

g−1∑
k=0

(ℓ)

= g zℓ.

Note. In the category FinSet, cartesian products distribute over coproducts,
and thus Proposition 7.1 completely determines the product structure on P .
In particular, it shows that z1 = 1P .

Corollary 7.1.1. As a commutative semiring, (P,+, 0P , ·, 1P ) is isomorphic
to

P ∼= N[z2, z3, z4, . . . ]/ ∼

where the relation ∼ is generated by zn · zm ∼ g zℓ as dictated by Proposition
7.1.

Example 7.2.

(4, 3, 3, 1) · (5, 2, 2, 2) =
(
z4 + 2z3 + 1

)
· (z5 + 3z2)

= z20 + 2z15 + z5 + 6z4 + 6z6 + 3z2

= z20 + 2z15 + 6z6 + z5 + 6z4 + 3z2

= (20, 15, 15, 6, 6, 6, 6, 6, 6, 5, 4, 4, 4, 4, 4, 4, 2, 2, 2).

8 Applications to Finite G-Sets
Let ρ : G! Aut(X) be an action of a finite group G on a finite set X. Using
our huristic sense that τ is a kind of trace, we follow representation theory
and define the character χX : G! P of X to be
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Definition.
χX(g) := τ

(
ρ(g)

)
.

Since τ satisfies the cowedge contition, it is immediate that χX is a class
function (it is constant on conjugacy classes). As it turns out, we can say
much more:

Theorem 8.1. The map χ : [X] 7! χX defines a unital semiring homomor-
phism from the semiring of isomorphism classes of finite G-sets R to the
semiring PG

class of class functions from G to P .

Proof. In order to begin making sense of this statement, it is necessary to
understand the semiring structure on R and PG

class. The latter is simply
defined by pointwise addition and multiplication, so we will focus on the
former. Since the product and coproduct of G-sets are respectively unique
up to unique isomorphism, the definitions

[X] + [X ′] := [X ⊔X ′], and
[X] · [X ′] := [X ×X ′]

endow R with a well-defined product and sum. The zero object 0R is easily
seen to be the class [∅] with its obvious G-action, and the multiplicative
identity 1R is the class of the G-set consisting of a single point with the
trivial action. Verification of distributivity follows from distributivity for
actual G-sets and is purely formal.

Now suppose that φ : X ! X ′ is an isomorphism of G-sets. Then we
have that for any g ∈ G,

χX(g) = τ
(
ρ(g)

)
= τ
(
φ ◦ ρ(g) ◦ φ−1

)
= τ
(
ρ′(g)

)
= χX′(g).

Thus χ : [X] 7! χX is well-defined.
If ν : G! Aut(Y ) is another G-action, then

g 7!

(
ρ(g) ⊔ ν(g) : X ⊔ Y ! X ⊔ Y

)
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defines an action ρ ⊔ ν : G! Aut(X ⊔ Y ), and we have

χX⊔Y (g) = τ
(
ρ(g) ⊔ ν(g)

)
= τ
(
ρ(g)

)
+ τ
(
ν(g)

)
= χX(g) + χY (g).

We can also construct the product

g 7!

(
ρ(g)× ν(g) : X × Y ! X × Y

)
,

which defines an action ρ × ν : G ! Aut(X × Y ). Using the definition of
multiplication in P together with Proposition 4.1, we find that

χX×Y (g) = τ
(
ρ(g)× ν(g)

)
= τ

(
γ−1
1 ◦ σ

(
τ
(
ρ(g)

))
◦ γ1 × γ−1

2 ◦ σ
(
τ
(
ν(g)

))
◦ γ2

)

= τ

((
γ1 × γ2

)−1 ◦
(
σ
(
τ
(
ρ(g)

))
× σ

(
τ
(
ν(g)

)))
◦
(
γ1 × γ2

))

= τ

(
σ
(
τ
(
ρ(g)

))
× σ

(
τ
(
ν(g)

)))
= τ
(
ρ(g)

)
· τ
(
ν(g)

)
= χX(g) · χY (g).

In other words, we have that

χ
(
[X] + [Y ]

)
= χ

(
[X]
)
+ χ

(
[Y ]
)
, and

χ
(
[X] · [Y ]

)
= χ

(
[X]
)
· χ
(
[Y ]
)
.

The fact that χ takes 1R 7!
(
g 7! 1P

)
and 0R 7!

(
g 7! 0P

)
are easy to verify,

and this completes the proof.

Let us apply this theory to the group S3 to show what the equivalent
of a character table would be in this setting. The first thing to notice is
that in this setting, complete reducibility or semisimplicity is the statement
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that every finite G-set can be written uniquely as a disjoint union of orbits.
An orbit is just a transitive G-set, and these are the irreducible objects in
the category of G-sets. Every orbit is necessarily of the form G/H for some
subgroup H. In the case G = S3, there are only 4 isomorphism classes of
orbits and they are given below:

id [(1 2)]conj [(1 2 3)]conj
1 ∼= [S3/S3] 1 1 1

X := [S3/ ⟨(1 2 3)⟩] 2 z2 2
Y := [S3/ ⟨(1 2)⟩] 3 1 + z2 z3

S := [S3] 6 3z2 2z3

In the above table, the rows correspond to (isomorphism classes of) orbits
and the columns correspond to conjugacy classes of elements of S3. The
entries are the values of the character of the row applied to any element of
the conjugacy class of that column. Thanks to Theorem 8.1, by multiplying
entries vertically we obtain the characters of the product G-sets. Here are
some examples:

id [(1 2)]conj [(1 2 3)]conj
X · Y 6 3z2 2z3

X2 = X ·X 4 2z2 4
Y 2 = Y · Y 9 1 + 4z2 3z3

By semisimplicity, the set {1, X, Y, S} forms an N-basis for R, and we can
use this basis together with the above tables to find that

XY = S

X2 = 2X

Y 2 = Y + S.

The above shows that R is isomorphic to a quotient of N[X,Y ]. Specifically,
we have
Theorem 8.2. For G = S3, the semiring R of isomorphism classes of G-sets
is

R ∼= N[X,Y ]⧸⟨X2 = 2X , Y 2 = XY + Y
⟩

where the angle brackets denote the congruence relation generated by these
relations.
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