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Abstract

The goal of this note is to show that VecK (the category of finite
dimensional vector spaces over a field K) is trivial in many ways.

No Nontrivial Morphisms
Proposition 1 The natural endomorphisms of the identity functor on VecK
correspond precisely to scalars.

Proof: There exists a canonical, natural isomorphism

elts : VecKpK,´q ! idVecK ,

which identifies each vector space V with the vector space of its elements
VecKpK, V q. By precomposing with this natural isomorphism, then applying
the Yoneda lemma1, we obtain the desired result:

Nat
`

idVecK , idVecK

˘

– NatpVecKpK,´q, idVecKq

– idVecKpKq “ K.

1This kind of enriched Yoneda lemma does not work if we pass to division algebras,
and in fact Nat

`

idVecK , idVecK

˘

– ZpKq in general. The issue lies in the fact that noncom-
mutative rings do not have a valid internal hom in the classical sense.
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Proposition 2 The group Autb

`

idVecK

˘

of monoidal natural automorphisms
of the identity functor on VecK is trivial.
Proof: Tracing through the isomorphism established in 1, we find that if
ηk : idVecK ! idVecK is the natural transformation that corresponds to the
scalar k P K, then for all v P V ,

ηkV pvq “ kv.

Since the tensorators of the identity functor are themselves identities, the
statement that ηk be monoidal is precisely that

ηkUbV “ ηkU b ηkV .

In other words, for any u b v ‰ 0 we deduce that

ku b v “ ηkUbV

`

u b v
˘

“
`

ηkU b ηkV
˘`

u b v
˘

“ pkuq b pkvq

“ k2u b v

6 k “ k2.

Since K is a field, this implies that the only possible scalars that yield
monoidal natural transformations are k “ 0, 1. According to the conven-
tions of [1], in order for ηk to be a monoidal natural transformation, ηk1 must
be an isomorphism, and so the only possibility is k “ 1. This restriction was
necessary anyhow, since we wish only to consider monoidal natural isomor-
phisms, and k “ 0 implies all components are the zero morphism. Thus we
conclude that

Autb

`

idVecK

˘

“

!

ididVecK

)

Since the collection of all possible pivotal structures on VecK is a torsor
over this group we obtain:
Corollary 2.1 There is a unique pivotal structure on VecK, given by

α : idVecK −! p´q˚˚

αV : V −! V ˚˚

v 7−!
`

f 7! fpvq
˘

.
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In addition, this pivotal structure is spherical, and the quantum traces
and dimensions agree with the classical traces and dimensions of VecK.

So far we have seen that the identity functor idVecK is a somewhat inflex-
ible functor. Let us show that VecK itself is inflexible.

Proposition 3 All (K-linear) autoequivalences F : VecK ! VecK are natu-
rally isomorphic to idVecK.

Proof: At first let F : VecK ! VecK be any additive functor. In particular
this means that it preserves direct sums. Since every vector space V is
abstractly isomorphic to some direct sum of copies of K, say K‘d, the image
FV must be isomorphic to pFKq‘d. In turn, FK – K‘n for some n, and thus
FV – K‘nd. Effectively, this argument shows that F must scale dimensions
by the factor n, and hence that every vector space in the image of F must
have dimension dividing n.

Now suppose that F is an equivalence. Since F is essentially surjective,
every vector space must be isomorphic to something in the image of F . By
our previous observation, this implies that n “ 1, and hence there is an
isomorphism ϕ : K ! FK. Furthermore, we know that V – FV for every
vector space, but the goal here is to try make this natural. Since F is fully
faithful, we have that the map

F : VecK
`

V,W
˘

! VecK
`

FV, FW
˘

which is natural in both V and W , is an isomorphism. Combining these
facts, we get that

VecK
`

X,V
˘

– VecK

´

X,VecK
`

K, V
˘

¯

– VecK

´

X,VecK
`

FK, FV
˘

¯

– VecK

´

X,VecK
`

K, FV
˘

¯

– VecK
`

X,FV
˘

,

where each isomorphism above is natural in both X and V . Applying the
Yoneda Lemma, we obtain an isomorphism V ! FV which is natural in V ,
or in other words, a natural isomorphism idVecK ! F .

Propositions 1 and 3 imply the following important fact:
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Corollary 3.1 Any monoidal endofunctor pF, Jq of VecK is uniquely deter-
mined by the scalar JK,K : F pKbKq ! F pKq bF pKq. Moreover if JK,K “ k,
then the natural transformation ηV : v 7! 1

k
¨ v is the unique monoidal iso-

morphism pF, Jq ! pidVecK , id´q.
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No Nontrivial Braidings
Clearly the standard swap of tensor factors

bX,Y : X b Y Q x b y 7! y b x P Y b X

endows VecK with a symmetric braiding, but are there others? It turns out
that VecK is boring on this front as well because this is the only braiding
that it has. In fact, VecK doesn’t even have any half braidings!

Proposition 4 Let V P VecK. If c : pV b ´q ! p´ b V q is a natural
isomorphism satisfying the identity

@X,Y P VecK, cXbY “
`

idX b cY
˘

˝
`

cX b idY

˘

i.e. if c is a half-braiding for V , then cX “ bV,X .

Proof: Using the isomorphism of elements from 1, we have that for any w P

W P VecK, the map eltspwq : 1 7! w. This allows us to understand cW in
terms of cK. Consider the following commutative diagram:

V V

V b K K b V

V b W W b V

f

r´1
V ℓ´1

V

idV b eltspwq

cK

eltspwq b idV

cW

Whatever the map f : V ! V is, it is completely determined by cK and
vice versa. Using the diagram, we can calculate:

cW pv b wq “
`

cW ˝ pidV b eltspwqq ˝ r´1
V

˘

pvq

“
`

peltspwq b idV q ˝ ℓ´1
V ˝ f

˘

pvq

“
`

eltspwq b idV

˘`

1 b fpvq
˘

“ w b fpvq.
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This shows that cW doesn’t do anything to W , and simply swaps factors
while applying a fixed map f to the V factor. Using this characterization,
consider another commutative diagram:

V b K V V K b V

V b K b K K b K b V

K b V b K

idV br´1
K cK

r´1
V f ℓV

cKbK

cKbidK

ℓKbidV

idKbcK

In the above, we have used the fact that c is natural, and a half-braiding, as
well as the fact that rK “ ℓK (see [1], Cor. 2.2.5). Following the map around
the outer path yields f 2, but commutativity of the diagram implies this is
the same as just f . Since f : V ! V is an isomorphism, f 2 “ f implies
f “ idV , and this proves the claim.

Since all objects admit a unique half-braiding, we obtain:

Corollary 4.1 There exists a canonical isomorphism of (braided, monoidal)
categories

VecK ! ZpVecKq

V 7!
`

V , bV,´
˘

,

where Zp´q denotes the Drinfel’d center.

Also, since every braiding induces a half braiding by fixing one of the
factors, we obtain:

Corollary 4.2 The symmetric swap bX,Y is the one and only braiding that
exists on VecK.
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