How Trivial is Veck?
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Abstract

The goal of this note is to show that Vecg (the category of finite
dimensional vector spaces over a field K) is trivial in many ways.

No Nontrivial Morphisms

Proposition 1 The natural endomorphisms of the identity functor on Veck
correspond precisely to scalars.

Proof: There exists a canonical, natural isomorphism
elts : Vecx (K, —) — idvecy,

which identifies each vector space V' with the vector space of its elements
Veck (K, V). By precomposing with this natural isomorphism, then applying
the Yoneda lemma¥, we obtain the desired result:

Nat (idvec,, idvec, ) = Nat(Veck (K, —), idvec,)
idvee, (K) = K.

lle

IThis kind of enriched Yoneda lemma does not work if we pass to division algebras,
and in fact Nat (idvqu, idvecK) =~ Z(K) in general. The issue lies in the fact that noncom-
mutative rings do not have a valid internal hom in the classical sense.



Proposition 2 The group Aut®(z’dvecK) of monoidal natural automorphisms
of the identity functor on Veck is trivial.

Proof: Tracing through the isomorphism established in 0, we find that if
nk idvec, — idvec, is the natural transformation that corresponds to the
scalar k € K, then for all v e V|

m(v) = kv.
Since the tensorators of the identity functor are themselves identities, the
statement that n* be monoidal is precisely that
Moy = 15 @
In other words, for any u ® v # 0 we deduce that
ku®@uv = n(’}@‘,(u@v)

= (1 @nv) (u@v)

= (ku) ® (kv)

=kFu®u

Cok =k

Since K is a field, this implies that the only possible scalars that yield
monoidal natural transformations are & = 0,1. According to the conven-
tions of [}, in order for n* to be a monoidal natural transformation, ¥ must
be an isomorphism, and so the only possibility is £ = 1. This restriction was
necessary anyhow, since we wish only to consider monoidal natural isomor-
phisms, and k£ = 0 implies all components are the zero morphism. Thus we
conclude that

Autg (idvec, ) = {ididVecK}
O

Since the collection of all possible pivotal structures on Veck is a torsor
over this group we obtain:

Corollary 2.1 There is a unique pivotal structure on Vecg, given by
a:idyeq, — (=)™
ay Vo — V¥

v (f = f).
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In addition, this pivotal structure is spherical, and the quantum traces
and dimensions agree with the classical traces and dimensions of Vecg.

So far we have seen that the identity functor idyec, is a somewhat inflex-
ible functor. Let us show that Veck itself is inflexible.

Proposition 3 All (K-linear) autoequivalences F : Vecx — Veck are natu-
rally isomorphic to idyec -

Proof: At first let I’ : Vecx — Veck be any additive functor. In particular
this means that it preserves direct sums. Since every vector space V is
abstractly isomorphic to some direct sum of copies of K, say K®?, the image
FV must be isomorphic to (FK)®?. In turn, FK =~ K®" for some n, and thus
FV =~ K®n4  Effectively, this argument shows that /' must scale dimensions
by the factor n, and hence that every vector space in the image of F' must
have dimension dividing n.

Now suppose that F' is an equivalence. Since F' is essentially surjective,
every vector space must be isomorphic to something in the image of F'. By
our previous observation, this implies that n = 1, and hence there is an
isomorphism ¢ : K — FK. Furthermore, we know that V = F'V for every
vector space, but the goal here is to try make this natural. Since F' is fully
faithful, we have that the map

F : Veck (V, W) — Veck (FV, FW)

which is natural in both V and W, is an isomorphism. Combining these
facts, we get that

Veci:(X, V) = Vecx (X, Veck (K, V) )
> Vecy (X, Vecy (FK, FV) )
> Vecy (X, Vecy (K, FV))
~ Veck (X, FV),

where each isomorphism above is natural in both X and V. Applying the
Yoneda Lemma, we obtain an isomorphism V' — F'V which is natural in V,
or in other words, a natural isomorphism idyec, — F. O

Propositions m and B imply the following important fact:



Corollary 3.1 Any monoidal endofunctor (F,J) of Veck is uniquely deter-
mined by the scalar Jxx : F(KQ®K) — F(K)® F(K). Moreover if Jxx = k,
then the natural transformation ny : v — % v 1§ the unique monoidal iso-
morphism (F,J) — (idyec,, td_).



No Nontrivial Braidings
Clearly the standard swap of tensor factors
bxy 1 X®Y 2 2Qyu—y®zr € YR®X

endows Veckg with a symmetric braiding, but are there others? It turns out
that Vecg is boring on this front as well because this is the only braiding
that it has. In fact, Vecx doesn’t even have any half braidings!

Proposition 4 Let V € Veck. Ifc: (V® —) — (—®V) is a natural
isomorphism satisfying the identity

VX, Y e VecK, CXQy = (ZdX ) Cy) o (CX X Zdy)
i.e. if ¢ is a half-braiding for V, then cx = by x.

Proof: Using the isomorphism of elements from EI, we have that for any w €
W e Vecg, the map elts(w) : 1 — w. This allows us to understand ¢y in
terms of ckx. Consider the following commutative diagram:

f

V V

-1 -1
v Ly

VK x KQV

idy® elts(w) elts(w) ®idy

VW w WV

Whatever the map f: V — V is, it is completely determined by cx and
vice versa. Using the diagram, we can calculate:

cw(v@w) = (ew o (idy @elts(w)) o ry) (v)
= ((elts(w) @idy) o 6, o f)(v)
= (elts(w) ®idy) (1@ f(v))
=w® f(v).



This shows that ¢y doesn’t do anything to W, and simply swaps factors
while applying a fixed map f to the V factor. Using this characterization,
consider another commutative diagram:

—1

VoK — v ! V<E_RKeV

idV@?“Hzl W Ix®idy

VOK®K e KQKRV

K®VeK

In the above, we have used the fact that ¢ is natural, and a half-braiding, as
well as the fact that rx = fx (see [[L], Cor. 2.2.5). Following the map around
the outer path yields f2, but commutativity of the diagram implies this is
the same as just f. Since f : V — V is an isomorphism, f? = f implies
f =idy, and this proves the claim. O

Since all objects admit a unique half-braiding, we obtain:

Corollary 4.1 There exists a canonical isomorphism of (braided, monoidal)
categories

Veckx — Z(Veck)
Vi (V, bV7_),
where Z(—) denotes the Drinfel’d center.

Also, since every braiding induces a half braiding by fixing one of the
factors, we obtain:

Corollary 4.2 The symmetric swap bxy s the one and only braiding that
exists on Veck.
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