How Trivial is $Vec_{\mathbb{K}}$?

Sean Sanford

Abstract

The goal of this note is to show that $\mathsf{Vec}_{\mathbb{K}}$ (the category of finite dimensional vector spaces over a field \mathbb{K}) is trivial in many ways.

No Nontrivial Morphisms

Proposition 1 The natural endomorphisms of the identity functor on $Vec_{\mathbb{K}}$ correspond precisely to scalars.

Proof: There exists a canonical, natural isomorphism

$$elts : \mathsf{Vec}_{\mathbb{K}}(\mathbb{K}, -) \to \mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}},$$

which identifies each vector space V with the vector space of its elements $Vec_{\mathbb{K}}(\mathbb{K}, V)$. By precomposing with this natural isomorphism, then applying the Yoneda lemma¹, we obtain the desired result:

$$\begin{split} \mathbf{Nat}\big(\mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}},\mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}}\big) &\cong \mathbf{Nat}(\mathsf{Vec}_{\mathbb{K}}(\mathbb{K},-),\mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}}) \\ &\cong \mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}}(\mathbb{K}) \ = \ \mathbb{K}. \end{split}$$

¹This kind of enriched Yoneda lemma does not work if we pass to division algebras, and in fact $\mathbf{Nat}(\mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}},\mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}}) \cong Z(\mathbb{K})$ in general. The issue lies in the fact that noncommutative rings do not have a valid internal hom in the classical sense.

Proposition 2 The group $\operatorname{Aut}_{\otimes}(id_{\mathsf{Vec}_{\mathbb{K}}})$ of monoidal natural automorphisms of the identity functor on $\operatorname{Vec}_{\mathbb{K}}$ is trivial.

Proof: Tracing through the isomorphism established in 1, we find that if $\eta^k : \mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}} \to \mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}}$ is the natural transformation that corresponds to the scalar $k \in \mathbb{K}$, then for all $v \in V$,

$$\eta_V^k(v) = kv.$$

Since the tensorators of the identity functor are themselves identities, the statement that η^k be monoidal is precisely that

$$\eta^k_{U \otimes V} \ = \ \eta^k_U \otimes \eta^k_V.$$

In other words, for any $u \otimes v \neq 0$ we deduce that

$$ku \otimes v = \eta_{U \otimes V}^{k} (u \otimes v)$$

$$= (\eta_{U}^{k} \otimes \eta_{V}^{k}) (u \otimes v)$$

$$= (ku) \otimes (kv)$$

$$= k^{2}u \otimes v$$

$$\therefore k = k^{2}.$$

Since \mathbb{K} is a field, this implies that the only possible scalars that yield monoidal natural transformations are k=0,1. According to the conventions of [1], in order for η^k to be a monoidal natural transformation, η^k_1 must be an isomorphism, and so the only possibility is k=1. This restriction was necessary anyhow, since we wish only to consider monoidal natural isomorphisms, and k=0 implies all components are the zero morphism. Thus we conclude that

$$\mathbf{Aut}_{\otimes}\big(\mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}}\big) = \Big\{\mathrm{id}_{\mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}}}\Big\}$$

Since the collection of all possible pivotal structures on $\mathsf{Vec}_\mathbb{K}$ is a torsor over this group we obtain:

Corollary 2.1 There is a unique pivotal structure on $Vec_{\mathbb{K}}$, given by

$$\alpha: id_{\mathsf{Vec}_{\mathbb{K}}} \longrightarrow (-)^{**}$$

$$\alpha_{V}: V \longrightarrow V^{**}$$

$$v \longmapsto (f \mapsto f(v)).$$

In addition, this pivotal structure is spherical, and the quantum traces and dimensions agree with the classical traces and dimensions of $Vec_{\mathbb{K}}$.

So far we have seen that the identity functor $\mathrm{id}_{\mathsf{Vec}_\mathbb{K}}$ is a somewhat inflexible functor. Let us show that $\mathsf{Vec}_\mathbb{K}$ itself is inflexible.

Proposition 3 All (\mathbb{K} -linear) autoequivalences $F : \mathsf{Vec}_{\mathbb{K}} \to \mathsf{Vec}_{\mathbb{K}}$ are naturally isomorphic to $id_{\mathsf{Vec}_{\mathbb{K}}}$.

Proof: At first let $F: \mathsf{Vec}_{\mathbb{K}} \to \mathsf{Vec}_{\mathbb{K}}$ be any additive functor. In particular this means that it preserves direct sums. Since every vector space V is abstractly isomorphic to some direct sum of copies of \mathbb{K} , say $\mathbb{K}^{\oplus d}$, the image FV must be isomorphic to $(F\mathbb{K})^{\oplus d}$. In turn, $F\mathbb{K} \cong \mathbb{K}^{\oplus n}$ for some n, and thus $FV \cong \mathbb{K}^{\oplus nd}$. Effectively, this argument shows that F must scale dimensions by the factor n, and hence that every vector space in the image of F must have dimension dividing n.

Now suppose that F is an equivalence. Since F is essentially surjective, every vector space must be isomorphic to something in the image of F. By our previous observation, this implies that n=1, and hence there is an isomorphism $\phi: \mathbb{K} \to F\mathbb{K}$. Furthermore, we know that $V \cong FV$ for every vector space, but the goal here is to try make this *natural*. Since F is fully faithful, we have that the map

$$\underline{F}: \mathsf{Vec}_{\mathbb{K}}\big(V,W\big) \to \mathsf{Vec}_{\mathbb{K}}\big(FV,FW\big)$$

which is natural in both V and W, is an isomorphism. Combining these facts, we get that

$$\begin{split} \mathsf{Vec}_{\mathbb{K}}\big(X,V\big) &\cong \mathsf{Vec}_{\mathbb{K}}\Big(X,\mathsf{Vec}_{\mathbb{K}}\big(\mathbb{K},V\big)\Big) \\ &\cong \mathsf{Vec}_{\mathbb{K}}\Big(X,\mathsf{Vec}_{\mathbb{K}}\big(F\mathbb{K},FV\big)\Big) \\ &\cong \mathsf{Vec}_{\mathbb{K}}\Big(X,\mathsf{Vec}_{\mathbb{K}}\big(\mathbb{K},FV\big)\Big) \\ &\cong \mathsf{Vec}_{\mathbb{K}}\big(X,FV\big), \end{split}$$

where each isomorphism above is natural in both X and V. Applying the Yoneda Lemma, we obtain an isomorphism $V \to FV$ which is natural in V, or in other words, a natural isomorphism $\mathrm{id}_{\mathsf{Vec}_{\mathbb{K}}} \to F$.

Propositions 1 and 3 imply the following important fact:

Corollary 3.1 Any monoidal endofunctor (F,J) of $\mathsf{Vec}_{\mathbb{K}}$ is uniquely determined by the scalar $J_{\mathbb{K},\mathbb{K}}: F(\mathbb{K} \otimes \mathbb{K}) \to F(\mathbb{K}) \otimes F(\mathbb{K})$. Moreover if $J_{\mathbb{K},\mathbb{K}} = k$, then the natural transformation $\eta_V: v \mapsto \frac{1}{k} \cdot v$ is the unique monoidal isomorphism $(F,J) \to (id_{\mathsf{Vec}_{\mathbb{K}}}, id_{-})$.

No Nontrivial Braidings

Clearly the standard swap of tensor factors

$$b_{XY}: X \otimes Y \ni x \otimes y \mapsto y \otimes x \in Y \otimes X$$

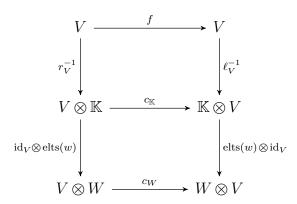
endows $Vec_{\mathbb{K}}$ with a symmetric braiding, but are there others? It turns out that $Vec_{\mathbb{K}}$ is boring on this front as well because this is the only braiding that it has. In fact, $Vec_{\mathbb{K}}$ doesn't even have any half braidings!

Proposition 4 Let $V \in \text{Vec}_{\mathbb{K}}$. If $c: (V \otimes -) \to (- \otimes V)$ is a natural isomorphism satisfying the identity

$$\forall X, Y \in \mathsf{Vec}_{\mathbb{K}}, \ c_{X \otimes Y} = (id_X \otimes c_Y) \circ (c_X \otimes id_Y)$$

i.e. if c is a half-braiding for V, then $c_X = b_{V,X}$.

Proof: Using the isomorphism of elements from 1, we have that for any $w \in W \in \mathsf{Vec}_{\mathbb{K}}$, the map $\mathsf{elts}(w) : 1 \mapsto w$. This allows us to understand c_W in terms of $c_{\mathbb{K}}$. Consider the following commutative diagram:



Whatever the map $f: V \to V$ is, it is completely determined by $c_{\mathbb{K}}$ and vice versa. Using the diagram, we can calculate:

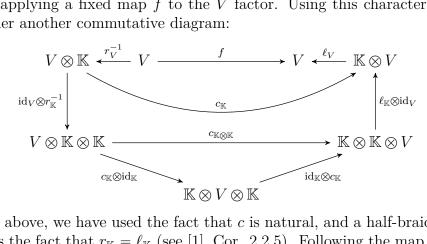
$$c_W(v \otimes w) = (c_W \circ (\mathrm{id}_V \otimes \mathrm{elts}(w)) \circ r_V^{-1})(v)$$

$$= ((\mathrm{elts}(w) \otimes \mathrm{id}_V) \circ \ell_V^{-1} \circ f)(v)$$

$$= (\mathrm{elts}(w) \otimes \mathrm{id}_V) (1 \otimes f(v))$$

$$= w \otimes f(v).$$

This shows that c_W doesn't do anything to W, and simply swaps factors while applying a fixed map f to the V factor. Using this characterization, consider another commutative diagram:



In the above, we have used the fact that c is natural, and a half-braiding, as well as the fact that $r_{\mathbb{K}} = \ell_{\mathbb{K}}$ (see [1], Cor. 2.2.5). Following the map around the outer path yields f^2 , but commutativity of the diagram implies this is the same as just f. Since $f: V \to V$ is an isomorphism, $f^2 = f$ implies $f = \mathrm{id}_V$, and this proves the claim.

Since all objects admit a unique half-braiding, we obtain:

Corollary 4.1 There exists a canonical isomorphism of (braided, monoidal) categories

$$\mathsf{Vec}_{\mathbb{K}} \to \mathcal{Z}(\mathsf{Vec}_{\mathbb{K}})$$
 $V \mapsto (V, b_{V-}),$

where $\mathcal{Z}(-)$ denotes the Drinfel'd center.

Also, since every braiding induces a half braiding by fixing one of the factors, we obtain:

Corollary 4.2 The symmetric swap $b_{X,Y}$ is the one and only braiding that exists on $Vec_{\mathbb{K}}$.

References

[1] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. *Tensor categories*, volume 205 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 2015.