Notes on the J-Homomorphism
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Abstract
The goal of these notes is to exposit on the J-homomorphism, in a
way that is as transparent as possible. Given any map f : S¥ — O(n),
the J-construction produces a new map J(f) : S¥*™ — S§". This pro-
cedure is often presented via a verbal description which does not allow
for many computations, if any. We present an explicit formula for the

J-construction, and prove that it induces a well-defined homomor-
phism J : 7, (O(n)) — mpqn(S™).

1 Preliminaries

The reader is expected to be familiar with elementray constructions from
point-set topology, the notion of homotopy, and the higher homotopy groups
of a space. At some point, there will be a technical lemma that uses the long
exact sequence of a pair, cellular homology and the Hurewicz Theorem. For
those less familiar with these concepts, the lemma is geometrically believable,
and you are encouraged to take it as a black box on first pass. We begin our
discussion with a few constructions that we will need.

We will use the notation I = [0, 1] for the unit interval. The variable
name t will be consistently used for points in I. Given a space X,

Definition. The cone on X is the space
CX := (I x X)/{(0,z)}.
There is a map
H:CX xI—CX
([t,z],¢) — [(¢'t), 2]



which exhibits the one point subspace {[0,z]} as a deformation retract of
CX. This shows that C'X is contractible for every space X.

Example 1.1. The cone on the n-sphere can be identified with the unit disk
CS™ =~ D"t

and the cone on an n-simplex can be identified with an n + 1-simplex
CA" =~ A",

From the cone, many interesting spaces can be defined. Note that there
is an inclusion ¢ : X — CX defined by x +— [1, z], which allows us to identify
X with the subset [1,X] < CX.

Definition. The suspension of a space X is defined to be
X =CX/X,
and the suspension of a map f: X — Y is defined to be
Yf:YXX — XY
[t x] — [, f(2)].

Here and throughout these notes we use square brackets to denote the equiv-
alence class of elements in a product. Whether this is in the cone or the
suspension should be clear from context. As defined, this forms a functor

2:8§—S8
from the category of spaces to itself.

Example 1.2. The suspension of an n-sphere is homeomorphic to the n + 1-

sphere
»o" > gl

Now let X and Y be spaces. We can construct
Definition. The Join of X and Y is the space
X*Y:=IxXxY/~
where the quivalence relation ~ is that

Ve, o' e X, g,y e Y (0,2,y) ~ (0,2',y) & (1,2,y) ~ (1,2,9).



In a quip, the join could be described as:
‘At 0 the x’s don’t matter, and at 1 the y’s don’t matter.

This construction can be defined in a number of different ways, but this is

the most economical for our purposes. Typical coordinates on the join will
be denoted by [t;z,y] € X *Y.

For these notes we will be particularly interested in the following example:
Example 1.3. The map
Gk gn—1 __ gn+k
[t; 2, y] — to + V1 — 12y

is a homeomorphism. In order to make sense of the addition, we are thinking
of S™ < R™! for m € {k,n — 1,k + n} and then identifying R¥"! x R" =~
R™+*+1 - Continuity should be clear, and the inverse mapping is given by

0 o i] it 0=z

(e.g)— 4 [lals &, ] i 0 <l <1

1] it o) = 1.

L7 =l
Closer inspection of this example shows that

{[t;z,y] e SF=5"1 |0

{[t;z,yl e SFxsm 1| L

t

< %} ~ Dk+1 > Sn—l
t<1

<
< } =~ SFx D

Thus we have a decomposition of k + n-sphere as
Shtn ~ phtl o gn=l () §% x D™,

When thinking about the join, it is often helpful to think of it as con-
taining X =~ [1; X, Y] at one end and Y = [0; X, Y] at the other. In between
these two ends lies a subspace =~ (0,1) x X x Y. Collapsing each end sepa-
rately gives rise to a quotient map

e

X#Y 5 (X#Y)/X))Y = £(X xY).
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Definition. To any map f: X x Y — Z we can associate the map
(Xf)oc: X*Y — XZ.

The assignment f +— (Xf) o c is known as the Hopf construction, and was
introduced by Heinz Hopf in [2].

Definition. Given a map f : X — C(Y,Y), it’s adjoint f:XxY —=Yis
defined by the formula

flx,y) == f(2)(y).

Example 1.4. The action of the orthogonal group O(n) on R™ preserves
lengths, and so O(n) acts on the unit sphere S"~!. This action allows us to
think of O(n) as a subspace of the space C(S"!,S"!) of continuous maps
from S™7! to itself. Thus any map f : S¥ — O(n) < C(S"71, 5" !) has an
adjoint f whose formula looks like

flz,y) = f(x)y,

where we use juxtaposition to indicate a matrix acting on a vector.

2 The Definition of the J-Homomorphism

Now we come to the main idea: the J-construction. Here we give two defi-
nitions primarily to indicate that the famous .J-homomorphism is really just
the map on homotopy classes induced by the general J-construction, which
is well-defined on a point-set level.

Definition. The J-construction for/applied to f : S* — O(n) is the map
J(f) : S¥t" — S™ determined by the Hopf construction applied to the adjoint

f. Explicitly, the formula is
J:C(S%,0(n)) — C(S§%™, S™)
f—(Zf)oc
This definition only makes sense in light of our previous observations that
Sktn ~ Gk % §n=1 and £.5"~1 =~ S". If we use join coordinates for the domain

and suspension coordinates for the range, then the map J(f) becomes more
transparent:

JF) eyl — [t f(2)y].
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Let us assign the base points

(1,0,...,0) =:p € S*
id e O(n)
[1;p,y] € SF= gt =~ ghtn
[1,y] € Bs™ 1~ 9™

With these choices in place, observe that

J()([Lp,y]) = [1, fp)y] = [Lyl].

This shows that J(f) : S¥*" — S™ is a pointed map whether f : S*¥ — O(n)
was pointed or not.

Definition. Restricting the J-construction results in a function
Jo : Co(S*,0(n)) — Co(S*+™, 5™)

taking pointed maps to pointed maps. This induces a map on homotopy
classes which is known as the J-Homomorphism:

J:m(0O(n)) — Than (S™).

(Note: We also denote this function by J, as is tradition, though in our
notation it might more accurately be denoted (.Jy)s.)

At this point, we have put two carts before the horse. Let us backtrack
briefly.

Proposition 1. The J-homomorphism is well-defined.

Proof. Tf welet H : S* x I — O(n) be a pointed homotopy from f = H(—,0)
to g = H(—, 1), then we can define
K : Sk — gn
([t; 2, y],t") — [t, H(z, t")y].
The map K is evidently continuous and pointed, and satisfies K(—,0) = J(f)

and K(—,1) = J(g). Thus Jy takes homotopic maps to homotopic maps as
claimed, so J is well-defined. ]



We should also show that this map respects the group structure. This
proof is due to Whitehead, and is pretty slick (see [4], or [3] for his original
paper). First, we will need the technical lemma that we threatened about in
the abstract. Here is the set up:

Let C' be a CW-complex given by the following construction: attach an
m — 1-cell ™! to a single 0-cell €°, then attach three m-cells e’, e5* and e}’
all along ™!, Let z;, i € {1,2,3} be orientations for the e, each having
the property that

ox; = s

is the same orientation for e™~'. The subsets SJ} = ef* U €' U e™ ! U €,

1 <1 < j < 3 are m-spheres, and each will be oriented as x; — ;.

Lemma 1. Given any pointed map f : C — X the homotopy classes
[flsp] =: iy € mn(X) satisfy the relation

Q13 = Qg + Q3.

Proof. By functoriality of m,,, it will suffice to prove the case f =id : C' — C.
Since C'is m — 1-connected, the Hurewicz map p : m,(C) — H,,(C) is an
isomorphism. Since H,,(C™Y) = 0, the long exact sequence in homology
shows that the promotion map

j i Hy(C) — H,,(C, 01

is injective. This implies that j o p : m, — H,,(C,C™~Y) is injective, but
then

joplag) =z — ;.
Finally since

joploas) = (w1 — x3)
= (21 — x9) + (22 — z3)

= j o planz) + j o plass),
injectivity of j o p implies the desired relation. O

Proposition 2. The J-homomorphism is indeed a homomorphism.
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Proof. We will reference the following subsets of D**1:

DFL = {z e DM | z44y = 0}

>0
} < DFYi={xe DF| 2y <O

N

Sk i={re S| zp =
<

SE = {QJ € Sk | .Tk+]_

Luckily, since the O(n) are topological groups, the fundemental groups of
O(n) for every n > 1 are abelian. This is convenient for us, because it means
that we can treat all spheres using a single argument.

Let [f],[g] € mx(O(n)). Since they are pointed maps, may assume that
f(z) =id € O(n) for all z € S* and that g(x) = id for all z € S¥. The map

- k
. flx) if zeSY
g(z) if zeS*

is then a representative of the sum [h] = [f] + [¢] € 7, (O(n)). Our decom-
position of D**! into halves yields the following decomposition of S*+":

Sk+n ~ Dk+1 > Snfl U Sk % Dn

~ (D'frl U Dﬁ“) x S" Ly (SE V) S_’i) x D"

~ DLy gl D]fl x 8"y S*E x DMy S_’i x D"

~ (DF x §"H U SE x D) U (DEF x 57T SE < D7)

Lok k

=: SFFr o ST
This fits our naming convention in that these two subspaces are each homeo-
morphic to k+n-disks and S¥" is their union along their common boundary

which is homeomorphic to S¥¥"~1. To see the claim about the boundary for
example, observe the following calculation.

SEFM A S = (DFF x §"TH U S x D) (DE x 57T SE < D7)
= (DF"' x " A DM xS U (ST x DM A DY xS
U (DF xS A S x D) U (S x D" A SY x D7)
= (DF x 5" ) u (8% x gm )
U (S5t x s U (SR < D)
= DF x "7ty SFtx Dn
~ Ghtnl,



Using this decomposition, we can check that

J(h)([t;x,y]) = J(f)([t;x,y]) V[t z,y] € S_’fr”
J(f) ([t 2, y]) = [t.y] Y [tz y] e SET"
J(9)([t: . y]) = [t,y] ¥ [t 2, y] € SEH
J(h) ([t 2, y]) = J(9) ([t 2, y]) ¥ [t 2, y] € S+

Using the complex C' from the lemma with m = k + n, we can define a
map f : C' — S™ that acts by the above three maps on the three different
k 4+ n-cells of C. The lemma then tells us that J(h) represents the class
[J(f)] + [J(g)]- Thus we have

3 Two Explicit Computations
Example 3.1. Let
idy : Z/2 = S* — O(1) = Z/2
be the map corresponding to the identity on Z/2 = {£+1}. Then we have that

J(idg) : St — S*
[t;e,v] — [t,ev].

Here the ¢, v € {£1} correspond to the signs of the z and y coordinates of the
unit circle in R?, so they are essentially telling you what quadrant you are in.
the S° coordinate in the range indicates only the sign of the y-coordinate.
As you run around the circle one full loop, the product ev goes from positive
to negative twice. In R/Z coordinates this is the x2 map, and in S' = C*
coordinates, this is the z — 2% map.



Example 3.2. Let
id; : S — SO(2) = S* < C*
be the map corresponding to the identity on S!. Then we have that
J(id,) : 8% — S?
[t; z, w] — [t, zw].

The preimage of the north pole is {[1; z,w]} =~ S* (since only z matters when
t = 1). Similarly the preimage of the south pole is also =~ S'. Now, choosing
a generic [t,v] gives preimages that look like

{[t; 2,027},

so again we get circular preimages, since there is only one free coordinate.
This observation can be used to construct local trivializations:
J(id;)7H(S?) = 52 x S
[t; z, w] — ([t,zw],z), &
J(idy)71(S?) = 52 x S
[t; 2, w] — ([t, zw], w).

This exhibits S* as an S! bundle over S?. Using the long exact sequence
on homotopy groups for a fibration, together with the fact that m3(S') =
m2(S') = 0, we conclude that this map J(id;) induces an isomorphism be-
tween

J(id1)x

(%) 70 (92,

which shows that J(id;) ~ +h the hopf map.

4 Appendix: Stability

The final property we wish to mention is the way in which J plays nicely with
suspensions. This section only gives an indication of the desired stability
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properties, and not a complete proof. It is for this reason that we have
relegated this section to an appendix.
Note that for every n > 1, there is an inclusion

tn: O(n) = O(n +1).

This can be realized as thinking of orthogonal transformations of R” as simply
the orthogonal transformations of R"*! that fix the last coordinate. We can
then go ahead and think of this as rotations(/reflections) of S™ that fix the
north and south poles. Using the standard basis for R**!, this map can be
expressed in terms of matrices as

i)

If we identify O(m) with it’s inclusion into the homeomorphism group of
S™m=1 for each m, and if we identify ©5"! =~ " then for any A € O(n), we
see that

im(A) = L(A): 5" — 5"

Note that

IxIxXxYSgFens ~ gl ~ w(She g N &I Ix X xY

Applying the J construction yields

I o ([t [E1]) = [t (F@)[E.0]

In other words, we have that

J(bnof)oih = EJ(f)OQQ-
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We wish to show that there is actually a homeomorphism S* % ¥5"~1 ~
Z(Sk * S”) which will allow us to identify these two spaces in a way that
allows for

Jino f) ~ TI(F),

Unfortunately, our calculation as it stands is not strong enough to imply
the result, since the relation [t;xz, [t',y]] < [¢,[t';x,y]] is not a function in
either direction. Though it is true that the J-homomorphism can be shown
to be stable (see for example [l}) in this sense, it is often merely a formal
consequence of having used a more sophisticated definition.

The author is still searching for an elementary proof of this property,
and would greatly appreciate a an email at scsanfor@iu.edy if you have any
insight into this problem.
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