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Abstract
The goal of these notes is to exposit on the J-homomorphism, in a

way that is as transparent as possible. Given any map f : Sk ! Opnq,
the J-construction produces a new map Jpfq : Sk`n ! Sn. This pro-
cedure is often presented via a verbal description which does not allow
for many computations, if any. We present an explicit formula for the
J-construction, and prove that it induces a well-defined homomor-
phism J : πk

`

Opnq
˘

! πk`npSnq.

1 Preliminaries
The reader is expected to be familiar with elementray constructions from
point-set topology, the notion of homotopy, and the higher homotopy groups
of a space. At some point, there will be a technical lemma that uses the long
exact sequence of a pair, cellular homology and the Hurewicz Theorem. For
those less familiar with these concepts, the lemma is geometrically believable,
and you are encouraged to take it as a black box on first pass. We begin our
discussion with a few constructions that we will need.

We will use the notation I “ r0, 1s for the unit interval. The variable
name t will be consistently used for points in I. Given a space X,
Definition. The cone on X is the space

CX :“ pI ˆ Xq{tp0, xqu.

There is a map

H : CX ˆ I −! CX
`

rt, xs, t1
˘

7−! rpt1tq, xs
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which exhibits the one point subspace tr0, xsu as a deformation retract of
CX. This shows that CX is contractible for every space X.
Example 1.1. The cone on the n-sphere can be identified with the unit disk

CSn – Dn`1,

and the cone on an n-simplex can be identified with an n ` 1-simplex

C∆n – ∆n`1.

From the cone, many interesting spaces can be defined. Note that there
is an inclusion ι : X ã! CX defined by x 7! r1, xs, which allows us to identify
X with the subset r1, Xs Ď CX.
Definition. The suspension of a space X is defined to be

ΣX :“ CX{X,

and the suspension of a map f : X ! Y is defined to be

Σf : ΣX −! ΣY

rt, xs 7−! rt, fpxqs.

Here and throughout these notes we use square brackets to denote the equiv-
alence class of elements in a product. Whether this is in the cone or the
suspension should be clear from context. As defined, this forms a functor

Σ : S ! S

from the category of spaces to itself.
Example 1.2. The suspension of an n-sphere is homeomorphic to the n`1-
sphere

ΣSn – Sn`1.

Now let X and Y be spaces. We can construct
Definition. The Join of X and Y is the space

X ˇY :“ I ˆ X ˆ Y { „

where the quivalence relation „ is that

@x, x1 P X, y, y1 P Y p0, x, yq „ p0, x1, yq & p1, x, yq „ p1, x, y1q.
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In a quip, the join could be described as:

‘At 0 the x’s don’t matter, and at 1 the y’s don’t matter.’

This construction can be defined in a number of different ways, but this is
the most economical for our purposes. Typical coordinates on the join will
be denoted by rt;x, ys P X ˇY .

For these notes we will be particularly interested in the following example:

Example 1.3. The map

Sk ˇSn´1 −! Sn`k

rt;x, ys 7−! tx `
?
1 ´ t2y

is a homeomorphism. In order to make sense of the addition, we are thinking
of Sm Ď Rm`1, for m P tk, n ´ 1, k ` nu and then identifying Rk`1 ˆ Rn –

Rn`k`1. Continuity should be clear, and the inverse mapping is given by

px, yq 7−!

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

”

0 ; x , y
}y}

ı

if 0 “ }x}

”

}x} ; x
}x}

, y
}y}

ı

if 0 ă }x} ă 1

”

1 ; x
}x}

, y
ı

if }x} “ 1.

Closer inspection of this example shows that

trt;x, ys P Sk ˇSn´1 | 0 ď t ď 1
2
u – Dk`1 ˆ Sn´1

trt;x, ys P Sk ˇSn´1 | 1
2

ď t ď 1u – Sk ˆ Dn.

Thus we have a decomposition of k ` n-sphere as

Sk`n – Dk`1 ˆ Sn´1 Y Sk ˆ Dn.

When thinking about the join, it is often helpful to think of it as con-
taining X – r1;X,Y s at one end and Y – r0;X,Y s at the other. In between
these two ends lies a subspace – p0, 1q ˆ X ˆ Y . Collapsing each end sepa-
rately gives rise to a quotient map

X ˇY
c↠

`

pX ˇY q{X
˘

{Y – Σ
`

X ˆ Y
˘

.
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Definition. To any map f : X ˆ Y ! Z we can associate the map

pΣfq ˝ c : X ˇY ! ΣZ.

The assignment f 7! pΣfq ˝ c is known as the Hopf construction, and was
introduced by Heinz Hopf in [2].

Definition. Given a map f : X ! CpY, Y q, it’s adjoint f̃ : X ˆ Y ! Y is
defined by the formula

f̃px, yq :“ fpxqpyq.

Example 1.4. The action of the orthogonal group Opnq on Rn preserves
lengths, and so Opnq acts on the unit sphere Sn´1. This action allows us to
think of Opnq as a subspace of the space CpSn´1, Sn´1q of continuous maps
from Sn´1 to itself. Thus any map f : Sk ! Opnq Ď CpSn´1, Sn´1q has an
adjoint f̃ whose formula looks like

f̃px, yq “ fpxqy,

where we use juxtaposition to indicate a matrix acting on a vector.

2 The Definition of the J-Homomorphism
Now we come to the main idea: the J-construction. Here we give two defi-
nitions primarily to indicate that the famous J-homomorphism is really just
the map on homotopy classes induced by the general J-construction, which
is well-defined on a point-set level.

Definition. The J-construction for/applied to f : Sk ! Opnq is the map
Jpfq : Sk`n ! Sn determined by the Hopf construction applied to the adjoint
f̃ . Explicitly, the formula is

J : CpSk, Opnqq −! CpSk`n, Snq

f 7−! pΣf̃q ˝ c.

This definition only makes sense in light of our previous observations that
Sk`n – Sk ˇSn´1 and ΣSn´1 – Sn. If we use join coordinates for the domain
and suspension coordinates for the range, then the map Jpfq becomes more
transparent:

Jpfq : rt;x, ys 7−! rt, fpxqys.
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Let us assign the base points

p1, 0, . . . , 0q “: p P Sk

id P Opnq

r1; p, ys P Sk ˇSn´1 – Sk`n

r1, ys P ΣSn´1 – Sn.

With these choices in place, observe that

Jpfq
`

r1; p, ys
˘

“ r1, fppqys “ r1, ys.

This shows that Jpfq : Sk`n ! Sn is a pointed map whether f : Sk ! Opnq

was pointed or not.

Definition. Restricting the J-construction results in a function

J0 : C0pSk, Opnqq −! C0pSk`n, Snq

taking pointed maps to pointed maps. This induces a map on homotopy
classes which is known as the J-Homomorphism:

J : πk

`

Opnq
˘

−! πk`n

`

Sn
˘

.

(Note: We also denote this function by J , as is tradition, though in our
notation it might more accurately be denoted pJ0q˚.)

At this point, we have put two carts before the horse. Let us backtrack
briefly.

Proposition 1. The J-homomorphism is well-defined.

Proof. If we let H : Sk ˆI ! Opnq be a pointed homotopy from f “ Hp´, 0q

to g “ Hp´, 1q, then we can define

K : Sk`n −! Sn

`

rt;x, ys, t1
˘

7−! rt,Hpx, t1qys.

The map K is evidently continuous and pointed, and satisfies Kp´, 0q “ Jpfq

and Kp´, 1q “ Jpgq. Thus J0 takes homotopic maps to homotopic maps as
claimed, so J is well-defined.
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We should also show that this map respects the group structure. This
proof is due to Whitehead, and is pretty slick (see [4], or [3] for his original
paper). First, we will need the technical lemma that we threatened about in
the abstract. Here is the set up:

Let C be a CW-complex given by the following construction: attach an
m´ 1-cell em´1 to a single 0-cell e0, then attach three m-cells em1 , em2 and em3
all along em´1. Let xi, i P t1, 2, 3u be orientations for the emi , each having
the property that

Bxi “ s

is the same orientation for em´1. The subsets Sm
ij “ emi Y emj Y em´1 Y e0,

1 ď i ď j ď 3 are m-spheres, and each will be oriented as xi ´ xj.

Lemma 1. Given any pointed map f : C ! X the homotopy classes
rf |Sm

ij
s “: αij P πmpXq satisfy the relation

α13 “ α12 ` α23.

Proof. By functoriality of πm, it will suffice to prove the case f “ id : C ! C.
Since C is m ´ 1-connected, the Hurewicz map ρ : πmpCq ! HmpCq is an
isomorphism. Since HmpCpm´1qq “ 0, the long exact sequence in homology
shows that the promotion map

j : HmpCq ã! HmpC,Cpm´1qq

is injective. This implies that j ˝ ρ : πm ! HmpC,Cpm´1qq is injective, but
then

j ˝ ρpαijq “ xi ´ xj.

Finally since

j ˝ ρpα13q “ px1 ´ x3q

“ px1 ´ x2q ` px2 ´ x3q

“ j ˝ ρpα12q ` j ˝ ρpα23q,

injectivity of j ˝ ρ implies the desired relation.

Proposition 2. The J-homomorphism is indeed a homomorphism.
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Proof. We will reference the following subsets of Dk`1:

Sk
` :“ tx P Sk | xk`1 ě 0u Ď Dk`1

` :“ tx P Dk`1 | xk`1 ě 0u

Sk
´ :“ tx P Sk | xk`1 ď 0u Ď Dk`1

´ :“ tx P Dk`1 | xk`1 ď 0u.

Luckily, since the Opnq are topological groups, the fundemental groups of
Opnq for every n ě 1 are abelian. This is convenient for us, because it means
that we can treat all spheres using a single argument.

Let rf s, rgs P πk

`

Opnq
˘

. Since they are pointed maps, may assume that
fpxq “ id P Opnq for all x P Sk

´ and that gpxq “ id for all x P Sk
`. The map

h : x 7!

#

fpxq if x P Sk
`

gpxq if x P Sk
´

is then a representative of the sum rhs “ rf s ` rgs P πk

`

Opnq
˘

. Our decom-
position of Dk`1 into halves yields the following decomposition of Sk`n:

Sk`n – Dk`1 ˆ Sn´1 Y Sk ˆ Dn

–
`

Dk`1
´ Y Dk`1

`

˘

ˆ Sn´1 Y
`

Sk
´ Y Sk

`

˘

ˆ Dn

– Dk`1
´ ˆ Sn´1 Y Dk`1

` ˆ Sn´1 Y Sk
´ ˆ Dn Y Sk

` ˆ Dn

–
`

Dk`1
´ ˆ Sn´1 Y Sk

´ ˆ Dn
˘

Y
`

Dk`1
` ˆ Sn´1 Y Sk

` ˆ Dn
˘

“: Sk`n
´ Y Sk`n

` .

This fits our naming convention in that these two subspaces are each homeo-
morphic to k`n-disks and Sk`n is their union along their common boundary
which is homeomorphic to Sk`n´1. To see the claim about the boundary for
example, observe the following calculation.

Sk`n
´ X Sk`n

` “
`

Dk`1
´ ˆ Sn´1 Y Sk

´ ˆ Dn
˘

X
`

Dk`1
` ˆ Sn´1 Y Sk

` ˆ Dn
˘

“
`

Dk`1
´ ˆ Sn´1 X Dk`1

` ˆ Sn´1
˘

Y
`

Sk
´ ˆ Dn X Dk`1

` ˆ Sn´1
˘

Y
`

Dk`1
´ ˆ Sn´1 X Sk

` ˆ Dn
˘

Y
`

Sk
´ ˆ Dn X Sk

` ˆ Dn
˘

“
`

Dk ˆ Sn´1
˘

Y
`

Sk´1 ˆ Sn´1
˘

Y
`

Sk´1 ˆ Sn´1
˘

Y
`

Sk´1 ˆ Dn
˘

“ Dk ˆ Sn´1 Y Sk´1 ˆ Dn

– Sk`n´1.
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Using this decomposition, we can check that

Jphq
`

rt;x, ys
˘

“ Jpfq
`

rt;x, ys
˘

@ rt;x, ys P Sk`n
`

Jpfq
`

rt;x, ys
˘

“ rt, ys @ rt;x, ys P Sk`n
´

Jpgq
`

rt;x, ys
˘

“ rt, ys @ rt;x, ys P Sk`n
`

Jphq
`

rt;x, ys
˘

“ Jpgq
`

rt;x, ys
˘

@ rt;x, ys P Sk`n
´ .

Using the complex C from the lemma with m “ k ` n, we can define a
map f : C ! Sn that acts by the above three maps on the three different
k ` n-cells of C. The lemma then tells us that Jphq represents the class
rJpfqs ` rJpgqs. Thus we have

J
`

rf s ` rgs
˘

“ J
`

rhs
˘

:“
“

Jphq
‰

“ rJpfqs ` rJpgqs

“: J
`

rf s
˘

` J
`

rgs
˘

.

3 Two Explicit Computations
Example 3.1. Let

id0 : Z{2 – S0 ! Op1q – Z{2

be the map corresponding to the identity on Z{2 “ t˘1u. Then we have that

Jpid0q : S1 ! S1

rt; ε, νs 7! rt, ενs.

Here the ε, ν P t˘1u correspond to the signs of the x and y coordinates of the
unit circle in R2, so they are essentially telling you what quadrant you are in.
the S0 coordinate in the range indicates only the sign of the y-coordinate.
As you run around the circle one full loop, the product εν goes from positive
to negative twice. In R{Z coordinates this is the ˆ2 map, and in S1 Ď Cˆ

coordinates, this is the z 7! z2 map.
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Example 3.2. Let

id1 : S
1 ! SOp2q – S1 ď Cˆ

be the map corresponding to the identity on S1. Then we have that

Jpid1q : S
3 ! S2

rt; z, ws 7! rt, zws.

The preimage of the north pole is tr1; z, wsu – S1 (since only z matters when
t “ 1). Similarly the preimage of the south pole is also – S1. Now, choosing
a generic rt, vs gives preimages that look like

trt; z, vz´1su,

so again we get circular preimages, since there is only one free coordinate.
This observation can be used to construct local trivializations:

Jpid1q
´1pS2

`q
–
 !S2

` ˆ S1

rt; z, ws 7−!
`

rt, zws, z
˘

, &

Jpid1q
´1pS2

´q
–
 !S2

´ ˆ S1

rt; z, ws 7−!
`

rt, zws, w
˘

.

This exhibits S3 as an S1 bundle over S2. Using the long exact sequence
on homotopy groups for a fibration, together with the fact that π3pS1q “

π2pS
1q “ 0, we conclude that this map Jpid1q induces an isomorphism be-

tween

π3pS
3q

Jpid1q˚
−! π3pS

2q,

which shows that Jpid1q » ˘h the hopf map.

4 Appendix: Stability
The final property we wish to mention is the way in which J plays nicely with
suspensions. This section only gives an indication of the desired stability
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properties, and not a complete proof. It is for this reason that we have
relegated this section to an appendix.

Note that for every n ě 1, there is an inclusion

ιn : Opnq ã! Opn ` 1q.

This can be realized as thinking of orthogonal transformations of Rn as simply
the orthogonal transformations of Rn`1 that fix the last coordinate. We can
then go ahead and think of this as rotations(/reflections) of Sn that fix the
north and south poles. Using the standard basis for Rn`1, this map can be
expressed in terms of matrices as

rAs 7−!

„

A 0
0 1

ȷ

.

If we identify Opmq with it’s inclusion into the homeomorphism group of
Sm´1, for each m, and if we identify ΣSn´1 – Sn, then for any A P Opnq, we
see that

ιnpAq “ ΣpAq : Sn ! Sn.

Note that

I ˆ I ˆ X ˆ Y
q1↠Sk ˇΣSn´1 – Sk`n`1 – Σ

`

Sk ˇSn´1
˘ q2↞ I ˆ I ˆ X ˆ Y

Applying the J construction yields

Jpιn ˝ fq

´

“

t;x, rt1, ys
‰

¯

“

”

t, ιn
`

fpxq
˘

rt1, ys

ı

“

”

t,Σ
`

fpxq
˘

rt1, ys

ı

“

”

t, rt1, fpxqys

ı

“

”

t, Jpfq
`

rt1;x, ys
˘

ı

“ Σ
`

Jpfq
˘

´”

t, rt1;x, ys

ı¯

.

In other words, we have that

Jpιn ˝ fq ˝ q1 “ ΣJpfq ˝ q2.
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We wish to show that there is actually a homeomorphism Sk ˇΣSn´1 –

Σ
`

Sk ˇSn
˘

which will allow us to identify these two spaces in a way that
allows for

Jpιn ˝ fq » ΣJpfq.

Unfortunately, our calculation as it stands is not strong enough to imply
the result, since the relation rt;x, rt1, yss ↔ rt, rt1;x, yss is not a function in
either direction. Though it is true that the J-homomorphism can be shown
to be stable (see for example [1]) in this sense, it is often merely a formal
consequence of having used a more sophisticated definition.

The author is still searching for an elementary proof of this property,
and would greatly appreciate a an email at scsanfor@iu.edu if you have any
insight into this problem.
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