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Main ldeas

» There is a correspondance between pointed braided fusion categories and
quadratic groups.

» A generic PBF is ~ (Vecg, c_ ).
» A QG = (G,q), with g: G— C* and subject to equations.

» A whole lot of cohomology around here.
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Pointed Fusion

A reminder of definitions:

Definition

A fusion category is a semisimple tensor category, with finitely many simple
objects.

Definition
A tensor category is pointed when every simple object is invertible, i.e. pointed
means: Xissimple < X*@ X—1—X® X*
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Pointed Fusion

» For any rigid monoidal category C, the invertible objects ‘behave like' a
group.

» Modulo isomorphisms, they form an actual group, denoted G(C).

» Pointed implies that all the simples represent elements in this group

» Fusion implies that all objects are just direct sums of these simples.

» Conclude that PFCs C ‘look like’ Vecgc)
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Vecc

Pointed Fusion

» Semisimple category generated by simples for each g € G, and where

C ifg=h

Hom(g, h) =
(g h) 0 otherwise

» The tensor product is just g® h = gh.

» All unitors and associators are trivial.

Sean Sanford
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Skeletal vs Strict

Pointed Fusion

» Skeletal categories have only one object in each iso class.

» Strict categories have unitors and associators equal to identities.

Theorem (Mac Lane, c.f. EGNO18, Rmks 2.8.6-7)

Every category is equivalent to a skeletal category, and every monoidal category is
equivalent to a strict monoidal category, BUT
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Skeletal vs Strict

Pointed Fusion

» Skeletal categories have only one object in each iso class.

» Strict categories have unitors and associators equal to identities.

Theorem (Mac Lane, c.f. EGNO18, Rmks 2.8.6-7)

Every category is equivalent to a skeletal category, and every monoidal category is
equivalent to a strict monoidal category, BUT You cannot assume both at once!
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Why C Zﬁ VecG(C)

Pointed Fusion

» The fusion rules match, but
» we never used the unitors or associators from C. They might be nontrivial.
» It's possible for C to not be equivalent to a strict and skeletal category.

» Vecgc) is strict and skeletal!

Sean Sanford

Pointed Braided Fusion <+ Quadratic Groups


http://pages.iu.edu/~scsanfor/

Pointed Fusion
0000080

Going Skeletal

Pointed Fusion

() (k1)

Our objects are g's. A a(g-hy X(g;hk/)
skeleton of C is like Vecgcy...

except associators nontrivial. ((g h) - k) .l g (h~ (k- /))
a(g, h, k) € End (ghk) ~C O‘(g’h’k)@dl Tid@a(h,k,l)
gk,
(- (h-K) -1 —E"0 g ((h-k)-1)

P
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Understanding «

Pointed Fusion

a(gh, k, Na(g, h, kI) = a(g, h, k)a(g, hk, a(h, k, 1)

» This is a form of cocycle equation.
> We'll see that [a] € H3(G;C*)

Sean Sanford
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Group Cohomology

Let G be a group and let A be an abelian group. H"(G; A) is an abelian group
encoding certain ‘higher dimensional information’ about G.

1. HY(G; A) = Hom(G, A)

2. H?(G; A) records isomorphism classes of central extensions of G by A.
3. H3(G; A) classifies certain crossed modules and associators.
4. H"(G; A) for higher n is harder to pin down.
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Group Cohomology

Definition
The group of n-cochains of G with coefficients in A is denoted C"(G; A) and
consists of all functions from G" — A.

» There is a map ¢ : C"(G; A) — C""(G; A) defined by

(5¢)(817"' 7gn+1) = ¢ 82, ;8n +Z gl,---,gigi+17---,gn+1>

+ (—1)”+1¢(g1, &)
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Group Cohomology
» These form a cochain complex:

0 — CYG A) = CY(GA) = CGA) -2 C3(GA) 2 -

er (5:C"—Crtl
> H"(G; A) = l|(m((6C"—:—)C"))

» For the topological, H"(G; A) = H"(BG; A), BG the classifying space of G.
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Group Cohomology

with trivial coefficients

(GAY | H [H'[H* [ H [ H*[H [ HS | H”

(Z:Z) | Z | zZ |00 0] o0]o0]oO

(Z;Z]2) |z/2|Z/2] 0 | 0 | 0] 0] 0] 0

(Z;C)y [C°[Cc* [0 00000

(Z/p;Z) | Z | 0 [Z/p| O |Z/p| 0 [Z/p| O
(Z/p;Z/2)|Z/2] 0 [ 0 | 0 | 0| 0 | 0] O
(Z/p; C*) | C* |Z/p| O |Z/p| O |Z/p| O |Z/p

(5:2) | Z | 0 |z/2] 0 |Z/6| 0 |[Z/2] ©

(Ss: 2)2) |Z2|Z2 22|22 | 2)2 | Z)2 | Z]2 | Z)2

(5. CY) | C<[Z/2] 0 [Z/6] 0 [Z/2] 0 |Z/6 IIJ
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Group Cohomology

with trivial coefficients

(GAY | H [H'[H* [ H[H*[H [ H | H”

(Z:Z) | Z | zZ |00 0] o0]o0]oO

(Z;Z]2) |z/2|Z/2] 0 | 0 | 0] 0] 0] 0

(Z;Cy [C[Cc* [0 [0 0 00O

(Z/p;Z) | Z | 0 [Z/p| O |Z/p| 0 [Z/p| O
(Z/p;Z/2)|Z/2] 0 [ 0 | 0 | 0| 0 | 0] O
(Z/p; C*) | C* |Z/p| O |Z/p| O |Z/p| O |Z]p

(5:2) | Z | 0 |z/2] 0 |Z/6| 0 [Z/2] ©

(Ss: 2)2) |Z2|Z2 22|22 | 2)2 | Z)2 | Z]2 | Z)2

(5. CY) | C<[Z/2] 0 [Z/6] 0 [Z/2] 0 |Z/6 IIJ
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H3(G; C*
1

Group Cohomology

C* is usually written multiplicatviely, so the 3-cocyle equation
0 = (6)(g, h k1) =a(h kI) —a(gh kI) + o(g hk |) — o(g, h kl) + o(g, h, k),

would be written as

1

1 = ((504)(g, h, k, /) = a(h, k, /) ~a(gh, k, /)_ -a(g, hk, l) . a(g, h, k/)_:l . a(g, h, k)
<
a(gh, k, 1)a(g, h, kI) = a(g, h, k)a(g, hk, I)a(h, k1)

P
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00000800000000

w
C ~ Vecg
Group Cohomology

> Take G= G(C).
> Take w = [a] € H3(G; C*).
» This is a skeletalization that incorporates the monoidal structure correctly.

» Up to monoidal equivalence, all pointed fusion categories are of this form!

Sean Sanford
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What about a Braiding on Vec{?

Group Cohomology

In order to encode a braiding, we need the associator «a, as well as the braiding c,
and we need them to satisfy the pentagon and the two hexagon relations.

K=y

Sean Sanford
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Abelian Cocycles

Group Cohomology

< al(gh, k Na(g, h, kl) = a(g, h, K)a(g, hk, a(h, k)

< a(h,k g)c(g, hk)a(g, h, k) = c(g, k)a(h, g, k)c(g; h)
= a(k g h) 'c(gh K)a(g, h k) = cg. kalg. k, h) "c(h, k)

A solution (a, ¢) to these equations is called an abelian cocyle € Z3,(G; C*).

Sean Sanford
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Ex 8.4.4

Group Cohomology

Suppose a(g, h, k) = 1. Show that ¢ must be a bicharacter.

> a(gh,k )a(g h,kl) = a(g, h, K)a(g, bk, )a(h, k, |
<= a(h,k g)c(g, hk)a(g, h, k) = c(g, k)a(h, g k)c(g, h)
— a(k g h)"tc(gh, k)o(g, h, k)t = c(g, k)a(g, k, h) "Lc(h, k)
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Ex 8.4.4

Group Cohomology

Suppose a(g, h, k) = 1. Show that ¢ must be a bicharacter.

< algh,k )a(g, h,kl) = a(g, h, K)a(g, bk, )a(h, k, |
<= a(h,k g)c(g, hk)a(g, h, k) = c(g, k)a(h, g k)c(g, h)
— alk g h) ‘c(gh k)a(g h k) = c(g k)o(g k. h) *c(h, k)
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Group Cohomology

Suppose a(g, h, k) = 1. Show that ¢ must be a bicharacter.

— 1o
< (g hk) = (g, k)c(g, h)
> c(gh,k) = c(g, k)c(h, k)
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Abelian Coboundaries
Group Cohomology

Abelian cochains fit into a cochain complex too!
» For J: Gx G— C*,

(6J)(g, b, k) = (J(h, K)J(gh, k)" U(g, hk)Jg, h)™* . J(h,g)Jg, h)*1>

» Such pairs of functions are called abelian coboundaries € B3,(G; C*).

Sean Sanford
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Abelian Coboundaries
Group Cohomology

Abelian cochains fit into a cochain complex too!
» For J: Gx G— C*,

(6J)(g, b, k) = (J(h, K)J(gh, k)" U(g, hk)Jg, h)™* . J(h,g)Jg, h)*1>

» Such pairs of functions are called abelian coboundaries € B3,(G; C*).
» Boredom Check: try to verify that B3,(G,C*) < Z3,(G; C*).
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Abelian Coboundaries
Group Cohomology

Abelian cochains fit into a cochain complex too!
» For J: Gx G— C*,

(6J)(g, b, k) = (J(h, K)J(gh, k)" U(g, hk)Jg, h)™* . J(h,g)Jg, h)*1>

» Such pairs of functions are called abelian coboundaries € B3,(G; C*).
» Boredom Check: try to verify that B3,(G,C*) < Z3,(G; C*).

» What diagrams do these formulas correspond to?

Sean Sanford
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Braided Tensor Functors — Abelian Coboundaries
Group Cohomology

A braided tensor functor (F,J) : (Vec[g] ,€) — (Vec[,f] , d) is a group
homomorphism F: G — K and a natural isomorphism J: F(g)F(h) — F(gh)
subject to the conditions below:

Sean Sanford
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Braided Tensor Functors — Abelian Coboundaries
Group Cohomology

A braided tensor functor (F,J) : (Vec[g] ,€) — (Vec[,f] , d) is a group
homomorphism F: G — K and a natural isomorphism J: F(g)F(h) — F(gh)
subject to the conditions below:

Associator compatibility:
(FgFh)Fk —————— Fg(FhFk)

)~ wid] Fenk Jiaeuhn
F(gh)Fk FgF(hk)
Hgh )1 e
Fl(ghk) —""5 F(g(hk) 1l
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Braided Tensor Functors — Abelian Coboundaries
Group Cohomology

A braided tensor functor (F,J) : (Vec[g] ,€) — (Vec[,f] , d) is a group
homomorphism F: G — K and a natural isomorphism J: F(g)F(h) — F(gh)
subject to the conditions below:

Associator compatibility:
(FgFh)Fk —————— Fg(FhFk)

Braiding compatibility:

F*(8)(g,h,k) F*(d)(&h)
J(g,h)_1®idT lid@J(h,k) FgFh ——— FhFg
F(gh) Fk FeF(hK) sen ] |th
J(gh,k)*lT lJ(gvhk) F(gh) M F(hg)

Fa(g,h,k)

Fle(hk) 1]

F ( (gh) k)
Sean Sanford

Pointed Braided Fusion <+ Quadratic Groups


http://pages.iu.edu/~scsanfor/

Group Cohomology
00000000000800

Braided Tensor Functors — Abelian Coboundaries

Group Cohomology
A braided tensor functor (F,J) : (Vec[g] ,€) — (Vec[,f] , d) is a group
homomorphism F: G — K and a natural isomorphism J: F(g)F(h) — F(gh)
subject to the conditions below:

= a(g h k) = F(8)(g h, k) - J(h, k) J(gh, k)" J(g, hk) (g, h) "
= c(g.h) = F'(d)(g h)- J(h,g)Ag h)

<~
(a,c) = F(B,d)-dJ

Conclusion: F pulls back the target cocycle to one that is cohomologous ]'IJ
to the domain cocycle, as whitnessed by the tensorator J.

Sean Sanford
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Abelian Cohomology

Group Cohomology

Definition
The third abelian cohomology of G is

73.(G.Cx)
H3 (G CX) = Zap\=r = J
ab(G'C ) ij(G;Cx)

Sean Sanford
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Abelian Cohomology

Group Cohomology

Definition
The third abelian cohomology of G is

73 (G, C*)
Ha3 GC*): =222~ 7
ol ) ij(G; Cx)
We've established that

{ [PBFCI% } o { (G,w) ‘w € H3,(G,C*)/Aut(G) }

Sean Sanford
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Abelian Cocycles — Quadratic Functions
Group Cohomology

> Set q(g) = c(g 8).
» Ab-Cocycle equations imply that

[1] a(g™") = a(g), and q(ghk)q(g)a(h)a(k) = q(gh)a(hk)q(kg)

Sean Sanford
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Abelian Cocycles — Quadratic Functions
Group Cohomology

> Set q(g) = c(g 8).
» Ab-Cocycle equations imply that

[1] a(g™") = a(g), and q(ghk)q(g)a(h)a(k) = q(gh)a(hk)q(kg)

» This means q: G — C* is quadratic.
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Quadratic Groups
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Quadratic Groups

Definition
A quadratic group is a pair (G, g) with G an abelian group and ¢ : G — C*

where for all g, h, k € G,

h
qg) = q(g?), and b(g h) = _algh) is bimultiplicative, i.e.

b(gh, k) = b(g, k)b(h, k) and b(g, hk) = b(g, h)b(g, k).

A function q satisfying these properties said to be quadratic, and the function b
is called the associated bicharacter. IIJ

Sean Sanford
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Quadratic Groups
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Quadratic Groups

Definition
The set of all quadratic functions g : G — C* on a given group G, is denoted by
Quad(G) and inherits a group structure from the product in C*.

Definition
A morphism of quadratic groups f: (G, q) — (K, p) is a group homomorphism
such that po f=gq.

G5 K

q\@x V& o

Sean Sanford
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Quadratic Groups

1. Show that a(g, h, k) = (—1)&"% is a nontrivial element in H3(Z/2; C*).

2. Show that an monoidal isomorphism 7 : (Fy, 1) — (F2, J2) of two braided
functors (F1, h1), (Fa2, J) : (Vec[g], c) — (Vec&f], d) determines a 1-cochain
A1 G— C* such that J; - 0X = .

3. Show that the quadratic equations () are equivalent to (G, q) being a
quadratic group.

4. Use either formulation to prove that Quad(Z) = C*.

5. Show that (Z/2, n— i”2) is a quadratic group. ]'IJ

Sean Sanford
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A Surprising Isomorphism
Quadratic Groups

In the 1950s, Eilenberg and Mac Lane introduced H}, and proved:
Theorem (EM50)

The assignment [(«, ¢)] — co § is an isomorphism:

H3,(G.C*) = HY(K(G,2); C*) = Quad(G)

Sean Sanford

Pointed Braided Fusion <+ Quadratic Groups


http://pages.iu.edu/~scsanfor/

Quadratic Groups
000e

A Surprising Isomorphism
Quadratic Groups

In the 1950s, Eilenberg and Mac Lane introduced H}, and proved:
Theorem (EM50)

The assignment [(«, ¢)] — co § is an isomorphism:

H3,(G.C*) = HY(K(G,2); C*) = Quad(G)

Note: H*(K(Z,2);C*) = H}(CP;C¥) = C* o

Sean Sanford
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Upgrading to an Equivalence

Proving the Equivalence

» PBFCs form a category with isomorphism classes of braided tensor functors
as morphisms.
» Quadratic groups and morphisms form a category.

Sean Sanford
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Upgrading to an Equivalence

Proving the Equivalence

» PBFCs form a category with isomorphism classes of braided tensor functors
as morphisms.
» Quadratic groups and morphisms form a category.

Theorem (JS)

The following assignment is an equivalence:

PBFCs — Quad
(C, ) — (G(C), co A)

<(F,J):C—>D)n—>(F*:G(C)—>G(D)> i1}

Pointed Braided Fusion <+ Quadratic Groups
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Proving the Equivalence
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Sketching the Proof

Proving the Equivalence

{PBFCS} «— Quad

Sean Sanford
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Sketching the Proof

Proving the Equivalence

{PBFCS} o {Hjb} & Quad
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Sketching the Proof

Proving the Equivalence

{PBFCS} o {Hjb} & Quad

1. Essentially surjective
2. Full
3. Faithful

Sean Sanford

Pointed Braided Fusion <+ Quadratic Groups


http://pages.iu.edu/~scsanfor/
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Sketching the Proof

Proving the Equivalence

{PBFCS} o {Hjb} & Quad

1. Essentially surjective v/
2. Full
3. Faithful

Sean Sanford
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Sketch Cont'd: Fullness

Proving the Equivalence

{PBFCS} o {Hj,,} & Quad
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Sketch Cont'd: Fullness

Proving the Equivalence

{PBFCS} o {Hjb} & Quad

1. Take a morphism of quadratic groups F: (G, q) — (K, p). g ~ [(«, ¢)] and
p~[(8,d)]

Sean Sanford
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Proving the Equivalence
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Sketch Cont'd: Fullness

Proving the Equivalence

{PBFCS} o {Hjb} & Quad

1. Take a morphism of quadratic groups F: (G, q) — (K, p). g ~ [(«, ¢)] and
p~[(8,d)]

2. We find F*[(5, d)] = [(«a, ¢)], so there is some 2-cochain J, w/
F(5,d)-0J = (a, )

P

Pointed Braided Fusion <+ Quadratic Groups
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Sketch Cont'd: Fullness

Proving the Equivalence

{PBFCS} o {Hjb} & Quad

1. Take a morphism of quadratic groups F: (G, q) — (K, p). g ~ [(«, ¢)] and
p~[(8,d)]

2. We find F*[(5, d)] = [(«a, ¢)], so there is some 2-cochain J, w/
F(B8,d)-6J=(a,c)

3. Use Fand J to define (F, J) : (Vecl] o) — (Vecl! d). IIJ

Sean Sanford
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Sketch Cont'd: Faithfulness

Proving the Equivalence

{PBFCS} o {Hjb} & Quad
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Sketch Cont'd: Faithfulness

Proving the Equivalence

{PBFCS} o {Hjb} & Quad

1. Pick two braided tensor functors (Fy, J), (F2, J2) : (Vec[g], c) — (Vec[f], d)
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Sketch Cont'd: Faithfulness

Proving the Equivalence

{PBFCS} o {Hjb} & Quad

1. Pick two braided tensor functors (Fy, J), (F2, J2) : (Vec[g], c) — (Vec[f], d)
2. Suppose they determine the same morphism of quadratic groups. In
particular F; = F, : G — K.
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Pointed Braided Fusion <+ Quadratic Groups


http://pages.iu.edu/~scsanfor/

Proving the Equivalence
000e®

Sketch Cont'd: Faithfulness

Proving the Equivalence

{PBFCS} o {Hjb} & Quad

1. Pick two braided tensor functors (F1, J1), (F2, J2) : (Vec[g], c) — (Vec[f], d)

2. Suppose they determine the same morphism of quadratic groups. In
particular F; = F, : G — K.

3. Consider J:= J; - J;*. By the pullback equation, J is symmetric.
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Proving the Equivalence

{PBFCS} o {Hjb} & Quad

1. Pick two braided tensor functors (Fy, J), (F2, J2) : (Vec[g], c) — (Vec[f], d)

2. Suppose they determine the same morphism of quadratic groups. In
particular F; = F, : G — K.

3. Consider J:= J; - J;*. By the pullback equation, J is symmetric.

4. = J= 0\ which means that )\ can be used to define an isomorphism of
the functors.
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Sean Sanford

Quadratic groups provide a truncation of the 2-category of PBFCs.

If we only care about functors up to isomorphism, we might as well work
with Quad.

“Tensor Categories”, Etingof, Gelaki, Nikshych and Ostrik.

“Cohomology Theory of Abelian Groups and Homotopy Theory I-IV",
Eilenberg and Mac Lane.

“Cohomology Theory of Abelian Groups"”, Proc. of the ICM, 1950 Vol II,
Mac Lane.

“Braided Tensor Categories”, Joyal and Street. IIJ
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