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1. Introduction

Mathematicians have been interested in group actions on spheres since before the algebraic

description of a group was defined. The rotational and reflective symmetries of the circle

and of S2 were naturally among the first to be considered. When we restrict attention to a

compact topological group, there is a classic theorem of Kerékjártó to the effect that for S2,

these are essentially the only actions:

Theorem 1 (Kerékjártó, [3]). Every continuous, effective action of a compact topological

group G on S2 is topologically conjugate to a linear action (to the standard action of a

subgroup of O3 on S2 as a subset of R3).

Thus in the topological category, in order to understand all effective actions of compact

groups on S2, it is enough to understand the subgroups G ≤ O3 and their actions via matrix

multiplication on S2 ⊆ R3 (henceforth referred to as linear actions). The higher dimensional

analogues of this theorem are decidedly false, as shown by Bing [1] and others, so Kerékjártó’s

result can be seen as a statement about how restrictive low dimensional actions can be.

Whenever there are two actions α, λ : G ×X → X, the phrase topologically conjugate in

the above theorem simply means that there is a homeomorphism f : X → X that for all

g ∈ G satisfies f(α(g, x)) = λ(g, f(x)), i.e. the following diagram commutes:

G×X
α

//

id×f
��

X

f
��

G×X
λ

// X

In other words there is an equivariant homeomorphism between the corresponding G-

spaces (X,α) and (X,λ). We will refer to an equivariant map between two G-spaces with

the same underlying set as a conjugating function (from α to λ).

For effective actions, the existence of the conjugating function f tells us important alge-

braic information about the structure of G, but the fact that the map f is continuous is

an added benefit that should not be overlooked. If we were to take G to be a compact Lie
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group, with a smooth action, it would be natural to expect then that f could be assumed

smooth as well. This turns out to be true, and is the content of our main theorem:

Theorem 2. Every smooth, effective action of a compact Lie group on S2 is smoothly con-

jugate to a linear action.

In other words, given these extra assumptions on the group action, we may take the

conjugating homeomorphism supplied by Theorem 1 to be a diffeomorphism. This result

was stated as fact in the survey article [14] with reference to a forthcoming (at the time)

paper of Edmonds [5]. Actually Edmonds makes no statement to this extent, and we have

found no further references in the literature. Certainly such an extension is a desirable

result, and despite having been assumed to be true, deserves to be written down explicitly.

To justify this claim, we offer here an interesting corollary of Theorem 2 for the transitive

case:

Corollary 3 (Essentially due to Palais, [12]). Every continuous, homomorphic embedding of

SO3 into Diff(S2) is the result of conjugating the standard inclusion λ by a unique orientation

preserving diffeomorphism.

In Section 6 We will show that this corollary follows easily from Theorem 2, together with

a powerful theorem of Palais [12, Cor. 2] regarding the topology of spaces of smooth actions.

The current paper was inspired by a more recent article of Kolev [8], wherein Theorem 1

is reproven using modern techniques. Some of the topological arguments that carry over to

the smooth category are borrowed from this article, and I am indebted to him for writing it.

Thanks are also due to Heiner Dovermann for his ideas, advice and patience.

2. Preliminaries

2.1. Group Actions. The material for this section can be found in Bredon [2, p.32]. A

G-set (X,α) is a set X together with a function α : G × X → X, subject to the following
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conditions:

α(e, x) = x ∀x ∈ X , and

α
(
g, α(h, x)

)
= α(gh, x) ∀g, h ∈ G & x ∈ X.

These conditions guarantee that the maps α(g,−) : X → X are each bijections, and that

α(g−1,−) is the inverse of α(g,−). We will employ the standard notation for these maps

αg(x) := α(g, x). With this convention, we can write the properties above succinctly as:

αe = idX , αg ◦ αh = αgh , αg−1 = α−1
g

The map α is referred to as the action (of G on X). Occasionally, when the action is

well understood, a G-set (X,α) will be referred to simply as X. We will have occasion to

consider multiple actions α and λ on the same set X, giving rise to the G-sets (X,α) and

(X,λ). Whenever the underlying set is understood, it is often useful to refer to the actions

themselves, without mention of X.

If (X,α) and (Y, β) are two G-sets, a map f : X → Y is said to be G-equivariant if the

following diagram commutes:

G×X
α

//

id×f
��

X

f
��

G× Y
β

// Y

If the group G is a topological group, and X is a topological space, it makes sense to

consider continuous actions. Similarly if G is a Lie group, and X is a smooth manifold, it

makes sense to consider smooth actions and we specialize our discussion to this case from

now on.

For any smooth manifold X, the set Diff(X) is defined to be the set of all diffeomorphisms

of X. This set has a natural group structure with composition of maps as multiplication. For

every smooth group action α of a Lie group G on X, there is an associated homomorphism

α̃ defined by
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α̃ : G→ Diff(X) , α̃ : g 7→ αg

If α has the property that for every g ∈ G, there is some x ∈ X such that αg(x) ̸= x, we

say that the action is effective. This condition is equivalent to the statement that αg = idX

if and only if g = e. Said another way, and action is effective precisely when ker(α̃) = {e}.

The First Isomorphism Theorem implies that α̃(G) ∼= G⧸ker(α̃), and so an effective action

is one whose associated homomorphism α̃ is a homomorphic embedding of G ↪→ Diff(X). In

some sense, this shows that the only ‘interesting’ actions are effective, and in light of this we

will only consider effective actions in this paper.

Given a group action α of G on X, there are particular subsets of both G and X that yield

important information about α. For an element g ∈ G, the set Fixα(g) := {x ∈ X | αg(x) =

x} is called the fixed point set (of g). The set

Fixα(G) :=
∩
g∈G

Fixα(g)

is the set of fixed points of the action α.

Dually, for an element x ∈ X, the set Stabα(x) := {g ∈ G | αg(x) = x} is called the

stabilizer of x (under α). The set Stabα(x) is easily seen to be a subgroup of G for any

x ∈ X, and if G is a topological group, Stabα(x) is a closed subgroup. For an element

x ∈ X, the set Orbα(x) := {αg(x) ∈ X | g ∈ G} is called the orbit of x (under α).

For any element y ∈ Orbα(x), there is some g ∈ G such that gx = y. If h ∈ Stabα(x), then

ghg−1(y) = gh(x) = g(x) = y, and so ghg−1 ∈ Stabα(y). This shows that the elements of a

given orbit have stabilizers that are conjugate to one another, i.e. Stabα(gx) = gStabα(x)g
−1.

The collection {Orbα(x) | x ∈ X} of all orbits of elements in X is called the quotient space

(of the G-set (X,α)) and is denoted by X⧸G. The relevant theorem that relates orbits and

stabilizers is the following:

Theorem 4 (Smooth Orbit/Stabilizer Theorem). If α is a smooth action of a compact Lie

group G on a compact manifold X, then

G⧸Stabα(x)
∼= Orbα(x)
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where ‘∼=’ means diffeomorphism, and the coset space has the canonical induced smooth

structure.

For more details and a proof of this theorem see Bredon [2, Cor. 1.3, p.303]. The above

has as a special case, a more classical version of the Orbit/Stabilizer Theorem, which says

that |G| = |Stabα(x)| · |Orbα(x)| whenever G and X are both finite.

2.2. Perspective on Groups. To prove Theorem 2, we would like to replace the conjugat-

ing homeomorphism f supplied by Theorem 1 with an equivariant diffeomorphism f.

Important Note: Throughout this paper, f will refer to the equivariant diffeomorphism we

are attempting to construct.

During the proof of Theorem 2, we expect to consider all smooth, effective actions α of a

compact Lie group G on S2. The conjugating function f will allow us to associate a matrix

group Ff (G) to the given group G. Our case by case proof of Theorem 2 will be indexed by

preferred representatives of the possible conjugacy classes of Ff (G) within the matrix group

O3. This section establishes these ideas.

The set, O3 := {A ∈M3(R) | At = A−1} forms a group under matrix multiplication. The

group O3 has a natural action µ : O3 × R3 → R3 by multiplication of a vector by a matrix:

(A, v) 7→ Av. If (A, v) ∈ O3 × S2, then

∥Av∥ =
√

(Av)t(Av) =
√
vtAtAv =

√
vtv = ∥v∥ = 1,

Thus the action µ restricts to a map Λ := µ |O3×S2 . The map Λ is a smooth action of

O3 on S2, and will be referred to as the standard action. The associated homomorphism

Λ̃ : O3 ↪→ Diff(S2) will be referred to as the canonical inclusion.

Now suppose α is a smooth action of a compact Lie group G on S2. By Theorem 1, there

is a homeomorphism f : S2 → S2, such that f ◦ αg ◦ f−1 is a linear transformation for all

g ∈ G. Let Ff (g) be the matrix corresponding to f ◦ αg ◦ f−1 in the standard basis for R3.

If we set λ(g, x) = f ◦ αg ◦ f−1(x) = F (g) · x, this defines a linear action λ : G × S2 → S2.



§2.2 Smooth Conjugacy 8

We have the following relationships between α, λ and Λ:

f
(
α(g, f−1(x))

)
= λ(g, x) = Λ(Ff (g), x)

f ◦ αg ◦ f−1 = λg = ΛF (g)

λ̃ = Λ̃ ◦ Ff

Once we have found the linear action λ, conjugation by an element h ∈ O3 gives rise to

another linear action λh of G, defined by λhg = hλgh
−1 for each g ∈ G. This yields

λg ◦ f = f ◦ αg

⇐⇒

h−1λhgh ◦ f = f ◦ αg

⇐⇒

λhg ◦ (h ◦ f) = (h ◦ f) ◦ αg

=⇒

Fh◦f (g) = h · Ff (g) · h−1

=⇒

Fh◦f (G) = h · Ff (G) · h−1.

Our goal is to find a smooth conjugating function f from α to the a linear action λ. Since

λh is also a linear action, we could just as easily find a smooth conjugating function from α

to λh and this would also prove Theorem 2 for the action α. In fact, h ◦ f is smooth if and

only if f is smooth, so we are free to choose whichever h ∈ O3 makes λh particularly nice.

Now λh is the standard action of h ·Ff (G) ·h−1, so we know that every smooth action α of a

compact Lie group on S2 is topologically conjugate to the standard action of some preferred

representative of the conjugacy class determined by Ff (G).

For K ≤ O3 define the conjugacy class [K] := {hKh−1 | h ∈ O3}, and the set Cc(O3) :=

{[K] |K ≤ O3 is a compact, Lie subgroup} of all conjugacy classes of compact Lie subgroups.
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In Section 3, we will determine a system of distinct representatives1 of Cc(O3) that will serve

as the indexing set for the cases of the proof of Theorem 2.

2.3. G-CW Complexes. In the case where [Ff (G)] ∈ Cc(O3) is the conjugacy class of

a finite subgroup of O3, the proof of Theorem 2 proceeds by building up a new, smooth

map f piece by piece. This is done by defining f0 to be f restricted to a finite subset

X0 of S2, then taking successive extensions of f0 to larger and larger subsets. In order

to carry out such a construction, it is necessary to have an increasing sequence of subsets

X0 ⊂ X1 ⊂ X2 = S2 that are invariant under the action λ of G corresponding to our chosen

representative Ff (G) ≤ O3. The structure we will need is known as a finite G-CW complex,

and is an equivariant version of the more well known finite CW complex which we define

presently.

Let X be a topological space. A subset of C ⊆ X is called an n-cell if it is homeomorphic

to the open unit disk Dn := {v ∈ Rn | ∥v∥ < 1}, and is called a cell if it is an n-cell for some

n ∈ N. For a cell C, we define dim(C) = n if C is an n-cell. By L.E.J. Brouwer’s Theorem

on Invariance of Domain, dim is well-defined.

A finite CW complex (X,P ) is a Hausdorff space X together with a partition P of X into

finitely many cells, subject to the following criteria2:

• For every C ∈ P with dim(C) = n, there is a continuous map ϕC from the closed

unit disk Dn := {v ∈ Rn | ∥v∥ ≤ 1} to X with the following two properties:

(i) The image ϕC(S
n−1) is contained in a union of cells of P whose dimensions are

strictly less than n.

(ii) The restriction of ϕC to Dn is a homeomorphism onto its image im(ϕC

∣∣
Dn) =

C ⊆ X.

Now we will modify this construction so that it nicely incorporates a group action.

1These will be the ‘nice’ preferred representatives that we referred to earlier.
2This definition is only valid for finite CW complexes. The closure-finite and weak topology axioms for a

general CW complex are automatically satisfied for finite complexes.
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Let (X,λ) be a G-set where X is a topological space, and λ is a continuous action3. An

equivariant n-cell is a subset C ⊆ X that is equivariantly homeomorphic to G⧸HC
× Dn,

where G acts by left multiplication on the left factor and trivially on the right factor, for

some closed subgroup HC ≤ G. A subset C is called an equivariant cell if it is an equivariant

n-cell for some n. Define dim(C) = n if C is an equivariant n-cell.

A finite G-CW complex (X,λ, P ) is a triple where (X,λ) is a Hausdorff G-space, and P

is a partition of X into equivariant cells, and the following conditions hold:

• For every C ∈ P with dim(C) = n, there is a continuous map ϕC from G⧸HC
×Dn

to X with the following two properties:

(i) The image ϕC

(
G⧸HC

× Sn−1
)
is contained in a union of cells of P whose di-

mensions are strictly less than n.

(ii) The restriction of ϕC to G⧸HC
×Dn is an equivariant homeomorphism onto C.

In either the plain or equivariant case, the map ϕC is called a characteristic map for the

cell C. If (X,P ) is a finite CW complex or (X,λ, P ) is a finite G-CW complex, define the

collection Pk := {C ∈ P | dim(C) ≤ k}. The k-skeleton of X is then defined to be the

subset:

Xk :=
∪

dim(C)≤k

C

The definition of an equivariant cell ensures that the quotient space X⧸G inherits the

structure of a CW complex when it is endowed with the quotient topology from X. If

(X,λ, P ) is a G-CW complex and c ∈ X, then c ∈ C for a unique C ∈ P . Thus by definition

of an equivariant cell, there is map ϕC and a corresponding (gHC , x) ∈ G⧸HC
×Dn. By the

Orbit/Stabilizer Theorem, G⧸HC
∼= Orbλ(c) ∈ X⧸G. This shows how the equivariant cell C

corresponds to a unique (non-equivariant) cell in the quotient space.

In Section 4 we will construct explicit decompositions of S2 into equivariant cells for the

standard action of the chosen representatives discussed in Section 3.1.

3In other words, (X,λ) is a G-space.
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2.4. Facts About the Groups O3 and SO3. Here we establish some important facts

about O3 and SO3. Firstly there is a homomorphic projection p : O3 → SO3 that we will

need in order to classify the elements of Cc(O3). Secondly every element of SO3 is either the

identity matrix I, or a rotation about some axis through the origin in R3. Finally we quote

a classification theorem for finite subgroups of SO3, and strengthen it to meet our needs for

Theorem 2.

For the first fact, note that the determinant defines a homomorphism det : O3 → {±1}.

The kernel of det is the set of elements of O3 that preserve orientation, otherwise known as

SO3. The center of O3 is the subgroup {±I}. The element −I has determinant det(−I) =

(−1)3 = −1, so −I /∈ SO3. Let a ∈ O3, and assume standard matrix notation of −a := −I ·a.

If det(a) = −1, then det(−a) = det(−I · a) = (−1)(−1) = 1 and we find that −a ∈ SO3.

Define a map

p : O3 → SO3 , p : a 7→ det(a) · a

Evidently p is a homomorphism, and what’s more, it is a surjection that is split by the subset

inclusion map : ι : SO3 → O3. Because of this, it is easy to see that O3
∼= {±1} × SO3

(a = (det(a), det(a)a)), and that under this isomorphism p corresponds to projection onto

the second factor. Knowing that p is a projection is helpful for analyzing O3, but thinking

of p as a geometric projection is often misleading. Here is an example:

p



−1 0 0

0 1 0

0 0 1


 = (−1)


−1 0 0

0 1 0

0 0 1

 =


1 0 0

0 −1 0

0 0 −1


This shows that applying p to reflection across the yz-plane produces rotation by π radians

about the x-axis.

Let us examine how knowledge of the isomorphism O3
∼= {±I} × SO3 allows us to distin-

guish between conjugacy classes. Let H,K ≤ O3.

Since p is a homomorphism, [H] = [K] ∈ Cc(O3) implies [p(H)] = [p(K)] = Cc(SO3). The

contrapositive is

Fact 1. [p(H)] ̸= [p(K)] implies [H] ̸= [K].



§2.4 Smooth Conjugacy 12

Suppose that −I ∈ H and −I /∈ K. Since −I is central in O3, −I ∈ gHg−1 for all g ∈ O3

and so [H] ̸= [K]. For reference, we have:

Fact 2. −I ∈ H and −I /∈ K implies [H] ̸= [K]

The kernel of the determinant map restricted to H is H ∩ SO3. This kernel must be

preserved under conjugation, and so another tool will be:

Fact 3. [H ∩ SO3] ̸= [K ∩ SO3] implies [H] ̸= [K].

The map p : O3 → SO3 is a two to one covering map. If −I ∈ H, then ±h ∈ H for every

h ∈ H and since −I is central in O3, −I commutes with every element of H. This gives is

our fourth and final tool:

Fact 4. If −I ∈ H, then H ∼= {±I} × p(H)

Now we examine SO3. Note that every element of a ∈ SO3 has a 1 as an eigenvalue, for

consider det(a− I):

det(a− I) = det(a− aat) = det(a) det(I − at) = (−1)3 det(a− I)

=⇒

det(a− I) = 0.

Now set e1 to be a unit vector in the 1-eigenspace of a. Extend the set {e1} to an orthonormal

basis {e1, e2, e3} of R3. With this basis, the condition at = a−1 implies that a has the form:
1 0 0

0 x y

0 −y x

 ,
where 1 = det(a) = x2 + y2. This shows that a is a rotation (possibly by 0 radians) about

the axis determined by e1. Let θ ∈ R be such that x = cos(θ) and y = sin(θ), and with

minimal absolute value among such angles. For the limiting case where θ could be π or −π

we make the arbitrary choice θ = π.



13 S. C. Sanford §2.4

Define a1/2 to be the matrix 
1 0 0

0 cos(θ/2) sin(θ/2)

0 − sin(θ/2) cos(θ/2)


Then we have that a1/2 ∈ SO3, and (a1/2)2 = a ∈ SO3. By repeating this argument, we can

construct a1/4, a1/8 etc.

Now suppose H ≤ SO3 is a closed Lie subgroup of dim(H) ≥ 1. We will show that H

must contain a subgroup isomorphic to S1. If a ∈ H, then a must be a rotation about

some axis in R3. If a corresponds to a rotation by a rational multiple of π, then a has finite

order. Since dim(H) ≥ 1, H must contain elements of infinite order, and these necessarily

correspond to rotations by irrational multiples of π. Let c be such an element and let ℓ be

its axis of rotation. The subgroup ⟨c⟩ ≤ H is dense in the subgroup of all rotations about ℓ,

so the closure K = ⟨c⟩ is isomorphic to the circle group S1. Since H is closed, K ≤ H.

To prove Theorem 2, there will come a point when we need to know the following fact:

Theorem 5. Every finite subgroup of O2 is either cyclic, or dihedral. The group Z2 has two

distinct conjugacy classes: one that preserves orientation, and one that does not; and any

other subgroups are conjugate within O2 if and only if they are isomorphic.

We will not prove Theorem 5 here, but rather suggest that the interested reader refer to

Rees [13, Thm 9, p.22] for the classification up to isomorphism, and attempt to prove the

conjugacy classification themselves as it is not difficult. We will need the analogue of this for

dimension three as well, but it will not come so easily. We begin working our way towards

this three dimensional version with a well known result. In Wolf’s classical text ‘Spaces of

Constant Curvature’[17], he proves a classification result for finite subgroups of SO3:

Theorem 6 (Wolf, Thm 2.6.5, p.85). Every finite subgroup of SO3 is either cyclic, dihedral,

tetrahedral, octahedral or icosahedral. Furthermore, any two such subgroups are conjugate

within SO3 if and only if they are isomorphic.
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Using the decomposition provided by the projection p, we know that a = det(a)p(a).

Conjugation by an element in O3 gives

aHa−1 = det(a)p(a)Hp(a)−1 det(a) = p(a)Hp(a)−1.

This shows that conjugation of some H ≤ SO3 ≤ O3 by elements in O3 is equivalent to

conjugation within SO3. Thus we obtain an easy extension of Theorem 6:

Corollary 7. Every finite subgroup of SO3 is either cyclic, dihedral, tetrahedral, octahedral

or icosahedral. Furthermore, any two such subgroups are conjugate within O3 if and only if

they are isomorphic.

We will need a similar classification result for the case of compact Lie subgroups of SO3

up to conjugacy, and we present a direct argument for this classification here.

Proposition 8. If H ≤ SO3 is closed, and dim(H) ≥ 1, then H is conjugate to either S1,

S1 ⋊ Z2 or SO3.

Proof. Let H ≤ SO3 with dim(H) ≥ 1. By our discussion above, there is some K ≤ H

with K ∼= S1. Let ℓz be the z-axis, and let ℓ be the axis of rotation of (all elements of) K.

Let ρ ∈ SO3 be any rotation that maps ℓz onto ℓ. If K = H, then H is conjugate via ρ to

the embedding of S1 as rotations about ℓz. Any other embeddings H ′ of S1 into SO3 are

completely determined by their 1-eigenspace ℓ′. Since these are conjugate to rotation about

ℓz, they are all conjugate to one another.

Whenever we need to refer to the image Λg(Y ) of a subset Y ⊆ R3 under the linear

transformation Λg, we will use the notation g · Y .

If K ⊊ H, there is some g ∈ H \K ⊆ SO3. This element g must also have a nontrivial

1-eigenspace, say L. Notice that L ̸= ℓ, for otherwise this would imply that g ∈ K. There

are two possibilities: g · ℓ ̸= ℓ, or g · ℓ = ℓ.

Case 1: There is some g ∈ H \ K such that g · ℓ ̸= ℓ. If such a g exists, then the points

{±u} = L ∩ S2 have as stabilizer the subgroup gKg−1 ∼= S1. Thus H acts with two

distinct infinite stabilizers. This guarantees that H acts transitively on S2, and hence that
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H = SO3 (see for example Kolev [8, Lemma 6.3, p.210]). The only subgroup of SO3 that

acts transitively on S2 is SO3 itself, so H = SO3.

Case 2: For every g ∈ H \K, g · ℓ = ℓ. If this is the case, then since L ̸= ℓ, g must swap

the fixed points ±v ∈ ℓ ∩ S2 of K. This implies that g corresponds to rotation of π radians

about the line L, and L ⊆ ℓ⊥. This further implies that H contains the elements gθ for every

θ ∈ K, and every element of this form is a rotation of π radians about some line L′ ⊆ ℓ⊥.

It is a simple matrix calculation to see that gθg = θ−1, and hence H ∼= S1 ⋊ Z2. All of

the homomorphic embeddings of S1 ⋊ Z2 inside of SO3 are completely determined by the

1-eigenspace ℓ of the S1 subgroup, and are hence conjugate to one another by a rotation.

□

2.5. Riemannian Geometry. Here we assume the reader has familiarity with the notions

of smooth manifolds and their tangent bundles. A good introduction to this topic, as well as

the finer points of Riemannian Geometry is do Carmo’s book [4], and we assume a working

understanding of chapters 0 and 1 from this text.

A Riemannian metric on a smooth manifold M is an assignment of an inner product ⟨ , ⟩p

to every tangent space TpM , in such a way that if X and Y are any smooth vector fields on

M , then the map mX,Y :M → R defined by

mX,Y : p 7−→ ⟨Xp,Yp⟩p

is smooth. A pair
(
M, ⟨ , ⟩

)
of smooth manifold together with a Riemannian metric is called

a Riemannian manifold. By a partition of unity argument4, it can be shown that every

(paracompact) smooth manifold admits a Riemannian metric. If α is a smooth action of G

on M , then the metric is said to be α-invariant if for any u, v ∈ TpM ,

⟨dαgu, dαgv⟩αg(p) = ⟨u, v⟩p

for every g ∈ G.

Here we introduce the Haar integral following the presentation of Bredon in [2, p.11], and

use it to prove the existence of α-invariant Riemannian metrics.

4This is given as problem 2-C in [9, p.23]
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To every Lie group G, one can associate the vector space C∞(G,R) of smooth maps from

G to R. This vector space inherits a partial ordering from the partial ordering ≤ on R:

ϕ ≤ ψ if and only if ϕ(g) ≤ ψ(g) for all g ∈ G. For any r ∈ R, let r : g 7→ r denote the

constant function sending all of G to r.

Let ϕ ∈ C∞(G,R), and g, h ∈ G. Define the linear operator Rg : C∞(G,R) → C∞(G,R)

by Rgϕ(h) := ϕ(hg). If G is compact, then there exists a unique function I : C∞(G,R) → R

called the Haar integral, that is R-linear, monotonic and satisfies:

• (Normalized) I(1) = 1

• (G-invariant) I(Rgϕ) = I(ϕ) for all ϕ ∈ C(G,R) and g ∈ G.

Using this, we will create a new α-invariant metric from the old one. Let α be a smooth

action of G onM , let p ∈M and u, v ∈ TpM . Define a function ϕu,v(h) := ⟨dαhu, dαhv⟩αh(p).

The function ϕu,v(h) essentially uses the metric ⟨ , ⟩ to measure how the diffeomorphism αh

affects the tangent vectors u and v. Let us verify a way in which two of our notations relate:

ϕdαgu,dαgv(h) =
⟨
dαh(dαgu), dαh(dαgv)

⟩
αh(αg(p))

= ⟨dαhgu, dαhgv⟩αhg(p)

= ϕu,v(hg) = Rgϕu,v(h)

=⇒

ϕdαgu,dαgv = Rgϕu,v.

Using ϕu,v, we define a new Riemannian metric ⟨ , ⟩α by the equation:

⟨u, v⟩αp := I(ϕu,v)

The fact that I is monotonic forces this to once again define an inner product on each

tangent space. The fact that ϕu,v(h) is a smooth function of u, v and h, shows that this

assignment of inner product is done in a smooth way, and hence defines a Riemannian metric
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on M . To see that this metric is in fact α-invariant, observe that:

⟨dαgu, dαgv⟩ααg(p) : = I(ϕdαgu,dαgv)

= I(Rgϕu,v)

= I(ϕu,v) = ⟨u, v⟩αp .

As an application of this, suppose that there is a point x ∈ Fixα(G). There is an induced

action dα : G × TxM → TxM of G on the inner product space
(
TxM, ⟨ , ⟩α

)
, given by

dα(g, u) = dαgu.

It turns out that dα is what is known as an ‘orthogonal action’. Roughly speaking, this

means that if a basis B is chosen for TxM which is orthonormal with respect to ⟨ , ⟩α,

then the matrices corresponding to the αg in this basis will be orthogonal matrices, i.e.

[dαg]
t
B = [dαg]

−1
B for all g ∈ G. For our purposes, M = S2, so these tangent spaces are

two-dimensional, hence we can identify these induced actions dα of G on TxM with linear

actions of G on R2.

Another notion we will employ is that of the exponential map. Let ⟨ , ⟩ be a Riemannian

metric on a smooth manifold M . For every p ∈ M , there is a map expp : U → M for

some open neighborhood U of 0 ∈ TpM . The Riemannian manifold
(
M, ⟨ , ⟩

)
is said to be

complete (or geodesically complete) if each of the maps expp are defined for all u ∈ TpM .

Since this paper is concerned exclusively about S2 which is complete, we will only consider

complete manifolds here.

The map expp has several important properties. Firstly, expp depends on the Riemannian

metric. When we have an action α and an α-invariant metric ⟨ , ⟩α, we will indicate the

dependence of the exponential map on this metric by writing expα
p . For any fixed point

x ∈M , expα
x : (TxM,dα) → (M,α) is G-equivariant, i.e. expα

x(dαgu) = αg exp
α
x(u).

The exponential map expp is a local diffeomorphism, but not a diffeomorphism for any

compact M because it will not be injective. Let Bε(0) :=
{
u ∈ TpM |

√
⟨u, u⟩p < ε

}
be the

open ball of radius ε centered at 0 ∈ TpM , and define the injectivity radius (at p) to be the
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number

Rp := sup
{
ε > 0 | expp

∣∣
Bε(0)

is injective
}
.

This value is important for making arguments about the topology of M , and we will use it

to prove Lemma 10.

This concludes the preliminaries section.

3. Classification of Compact Subgroups of O3 up to Conjugacy

We give here a list of representatives for the elements of Cc(O3). The conclusion of this

section is the following:

Theorem 9. The second column of Table 1 constitutes a system of distinct representatives

for Cc(O3).

In other words, every compact Lie subgroup H ≤ O3 belongs to the conjugacy class of

exactly one of the groups in Table 1.

Important Note: In the context of Theorem 2, the reader should be thinking of H = Ff (G)

from Section 2.2.
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Ref. Connected Preferred Image Intersection Orientation Isomorphism classes

No. components representative under p with SO3 preserving? of stabilizers

(1) 1 SO3 SO3 SO3 Y S1

(2) 2 O3 SO3 SO3 N O2

(3) 1 S1 S1 S1 Y 1, S1

(4) 2 S1 × Z2 S1 S1 N 1,Z2, S1

(5) 2 O2
∼= S1 ⋊ Z2 O2 O2 Y 1,Z2, S1

(6) 2 Ô2
∼= S1 ⋊ Z2 O2 S1 N 1,Z2, O2

(7) 4 O2 × Z2 O2 O2 N 1,Z2, O2

(8) k Zk Zk Zk Y 1,Zk

(9) 4j Z̃2(2j) Z4j Z2j N 1,Z2j

(10) 4j + 2 ˜Z2(2j+1) Z4j+2 Z2j+1 N 1,Z2,Z2j+1

(11) 4n Z2n × Z2 Z2n Z2n N 1,Z2,Z2n

(12) 4n+ 2 Z2n+1 × Z2 Z2n+1 Z2n+1 N 1,Z2n+1

(13) 2k Dk Dk Dk Y 1,Z2,Zk

(14) 2k D̂k Dk Zk N 1,Z2, Dk

(15) 8j D̃2(2j) D4j D2j N 1,Z2, D2j

(16) 8j + 4 ˜D2(2j+1) D4j+2 D2j+1 N 1,Z2, (Z2)2, D2j+1

(17) 8n D2n × Z2 D2n D2n N 1,Z2, (Z2)2, D2n

(18) 8n+ 4 D2n+1 × Z2 D2n+1 D2n+1 N 1,Z2, D2n+1

(19) 12 Tet ∼= A4 Tet Tet Y 1,Z2,Z3

(20) 24 Tet× Z2 Tet Tet N 1,Z2, (Z2)2,Z3

(21) 24 Oct ∼= S4 Oct Oct Y 1,Z2,Z3,Z4

(22) 24 TetF ∼= S4 Oct Tet N 1,Z2, (Z2)2, D3

(23) 48 Oct× Z2 Oct Oct N 1,Z2, (Z2)2, D3, D4

(24) 60 Ico ∼= A5 Ico Ico Y 1,Z2,Z3,Z5

(25) 120 Ico× Z2 Ico Ico N 1,Z2, (Z2)2, D3, D5

Table 1

After clarifying the notation of Table 1, we will prove Theorem 9 for the cases where H is

finite, and then finally for H a compact Lie subgroup of dim(H) ≥ 1.

3.1. Description and Notation of the Preferred Representatives. This section is for

reference, and is long. Those readers primarily interested in theory are encouraged to skip

ahead to the proof.

(1)/(2) When [H] = [SO3] or [O3], these classes each contain only one element, so the

preferred representative is SO3 or O3 itself.
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(3) When [H] = [S1], the preferred representative is the subgroup of rotations about the

z-axis.

(4) When [H] = [S1×Z2], the preferred representative is the subgroup generated by rotations

about the z-axis, together with the matrix −I.

(5) When [H] = [O2], the preferred representative is the subgroup generated by rotations

about the z-axis, together with a rotation of π radians about the x-axis.

(6) When [H] = [Ô2], the preferred representative is the subgroup generated by rotations

about the z-axis, together with reflection across the yz-plane.

(7) When [H] = [O2×Z2], the preferred representative is the subgroup generated by rotations

about the z-axis, together with a rotation of π radians about the x-axis, and with −I.

For the finite groups, we describe generators according to the following presentation

scheme:

(I) Cyclic
⟨
a | ak = 1

⟩
(II) Dihedral

⟨
a, b | ak = b2 = (ab)2 = 1

⟩
(III) Tetrahedral

⟨
a, b | a3 = b3 = (ab)2 = 1

⟩
(IV ) Octahedral

⟨
a, b | a4 = b3 = (ab)2 = 1

⟩
(V ) Icosahedral

⟨
a, b | a5 = b3 = (ab)2 = 1

⟩
.

For the cyclic and dihedral5 cases Zk and Dk, the generator a will correspond to rotation

through 2π
k

radians about the z-axis, and the generator b will correspond to a rotation of

π radians about the x-axis. The alternate embeddings Z̃2n, D̃2n and D̂k as well as the

extensions Zk × Z2 and Dk × Z2 will reference these generators.

Note: The embellishment ˜ indicates the presence of the generator −a. The marking ̂
indicated the presence of −b (this is in keeping with its use in Ô2 above).

Note: As a general rule k will either be 2n or 2n+1, and if k = 2n, then n will be either

2j or 2j + 1.

5Here the notation Dk for the dihedral groups corresponds to a group of order 2k, whose underlying cyclic

group is Zk.
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(8) When [H] = [Zk], the preferred representative is the subgroup generated by the matrix

a.

(9)/(10) When [H] = [Z̃2n], the preferred representative is the subgroup generated by the

matrix −a.

(11)/(12) When [H] = [Zk × Z2], the preferred representative is the subgroup generated by

the matrices a and −I. Note that when k is odd, this group is cyclic and generated by

−a.

(13) When [H] = [Dk], the preferred representative is the subgroup generated by the matrices

a and b.

(14) When [H] = [D̂k], the preferred representative is the subgroup generated by the matrices

a and −b.

(15)/(16) When [H] = [D̃2n] (n = 2j or 2j + 1), the preferred representative is the subgroup

generated by the matrices −a and b.

(15)/(16)⋆ [H] = [
̂̃
D2n], This is a special case that will occur in the proof of Theorem 9, and

will turn out to be redundant: In this case, the preferred representative is the subgroup

generated by the matrices −a and −b.

(17)/(18) When [H] = [Dk × Z2], the preferred representative is the subgroup generated by

the matrices a, b and −I.

(19) When [H] = [Tet] (The rotational symmetry group of the tetrahedron), the preferred

representative is the subgroup generated by the matrices:

a =


0 −1 0

0 0 −1

1 0 0

 , & b =


0 0 1

1 0 0

0 1 0



(20) When [H] = [Tet × Z2], the preferred representative is the subgroup generated by −I

and the generators of Tet as above.
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(21) When [H] = [Oct] (the rotational group of the octahedron), the preferred representative

is the subgroup generated by the matrices:

a =


1 0 0

0 0 −1

0 1 0

 , & b =


0 0 1

1 0 0

0 1 0


(22) When [H] = [TetF ], the preferred representative is the subgroup generated by the ma-

trices −a and b, where a, b correspond to the generators of Oct listed above.

For the construction of the equivariant CW decomposition for this group, it will be

in our best interest to realize this as the full symmetry group of the tetrahedron. define

A = b2a2 and B = b, and C = −a2b2a. Direct calculation shows that A and B are

precisely the generators for Tet, and C provides the extra reflection across an edge.

(23) When [H] = [Oct × Z2] (the full symmetry group of the octahedron), the preferred

representative is the subgroup generated by the matrices a and b of Oct from above,

together with −I.

(24) When [H] = [Ico] (the rotation group of the icosahedron), the preferred representative

is the subgroup generated by:

s =


−1 0 0

0 −1 0

0 0 1

 , & b = 1
2


−φ−1 −φ 1

φ −1 −φ−1

1 φ−1 φ


where φ = 1+

√
5

2
is the golden ratio. If we set a = sb, then {a, b} can also serve as a

generating set for Ico, and this is in keeping with our presentation conventions from Page

20.

(25) When [H] = [Ico × Z2] (the full symmetry group of the icosahedron), the preferred

representative is the subgroup generated by the matrices a and b of Ico above, together

with −I.

3.2. Classification of Finite Subgroups up to Conjugacy. Below we flesh out the

details of Theorem 9 for finite H ≤ O3. We rely primarily on the four facts from Section 2.4.
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Let |H| < ∞, and let p : O3 → SO3 denote projection of Section 2.4. The image

p(H) ≤ SO3 is finite, so it must be in exactly one of the 5 conjugacy classes listed in Corollary

7. The 5 conjugacy classes correspond to finite subgroups which have the presentations listed

on page 20.

Since these presentations are valid for every group in a given [p(H)] (the actual a and

b vary from class to class), we can endow p(H) with such a presentation6. The group H

surjects onto p(H), and as such must contain elements that map onto the generators a and

b of p(H). We argue by cases:

Case I: p(H) =
⟨
a | ak = 1

⟩
We show that [H] must be exactly one of reference numbers (8)-(12). Either −I ∈ H or

−I /∈ H. If −I ∈ H, then Fact 4 applies and H ∼= Zk × Z2 (reference numbers (11) and

(12)). Note that this includes the possibility of the trivial group 1 = Z1, where the preferred

representative 1× Z2 acts by central involution.

Assume now that −I /∈ H. Since H surjects onto p(H), it must contain a or −a. If a ∈ H,

then −ai /∈ H for any i for otherwise this would imply −I ∈ Z. Thus a ∈ H and −I /∈ H

implies that H ≤ SO3, so H = p(H) = Zk (class number (8)).

If −a ∈ H and −I /∈ H, then k must be even. To see this, notice that if k = 2n+ 1, then

(−a)k = −ak = −I. Assume then that k = 2n. Since −a satisfies the same relations as a,

i.e. (−a)k = 1, it must generate a cyclic group of order k. The representative for this class

is Z̃2n (reference numbers (9) and (10)).

To see that these conjugacy classes are all distinct, notice that Z2n+1 has odd order, and

so cannot be conjugate to any of the other possibilities found here in case (I). By Fact 3,

Z2n cannot be conjugate to Z̃2n ⊈ SO3 nor Zn × Z2 ⊈ SO3, because Z2n ≤ SO3. Finally

[p(Z̃2n)] = [Z2n] ̸= [Zn] = [p(Zn × Z2)], so by Fact 1 [Z̃2n] ̸= [Zn × Z2].

Case II: p(H) =
⟨
a, b | ak = b2 = (ab)2 = 1

⟩
We show that [H] must be exactly one of reference numbers (13)-(18). H may or may not

contain −I, must contain a or −a or both, and must contain b or −b or both. If −I ∈ H,

6There is no harm in reading this section as though p(H) is in fact the preferred representative of [p(H)]

and it is recommended that the reader consider this situation if something becomes difficult to visualize.
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then a, b,−I ∈ H and |H| = 4k. By Fact 4, the preferred representative in this case is

Dk × Z2 for k = 2n or = 2n+ 1 (reference numbers (17) and (18)). As with the cyclic case,

if k = 2n+1, then −a ∈ H implies −I ∈ H, so a, b,−I ∈ H, and no new cases are obtained.

If −I /∈ H, and −a ∈ H then k must be even, say k = 2n. From here there are two

possibilities: −b ∈ H or −b /∈ H. If −b /∈ H then H = ⟨(−a), b⟩, and these generators

satisfy all the same relations as a and b, so H is dihedral. The preferred representative for

this class is D̃2n (reference numbers (15) and (16)). If −b ∈ H then H = ⟨(−a), (−b)⟩, and

these generators satisfy all the same relations as a and b, so H is dihedral. The preferred

representative for this class is
̂̃
D2n (this will turn out to be the same as reference numbers

(15) and (16)).

If −I,−a /∈ H, but −b ∈ H, then H = ⟨a, (−b)⟩ and H is dihedral as we have seen before.

The preferred representative in this case is D̂n (class number (14)). Finally, if none of

−I,−a,−b are in H, then H = p(H) (class number (13)). This exhausts all the possibilities

when p(H) ∼= Dk

Now we must show that these conjugacy classes are all distinct. The only classes of singly-

even (2(2n+1)) order groups are [D2n+1] (number (13) for n odd) and [D̂2n+1] (number (14)

for n odd). D2n+1 ≤ SO3 and D̂2n+1 ⊈ SO3, so these must represent distinct conjugacy

classes by Fact 3.

Of the classes whose groups are doubly-even (≡ 0 mod 4), D2n+1 × Z2 is the only group

that projects onto a group of singly-even order: p(D2n+1 ×Z2) = D2n+1, so it (class number

(18)) must be distinct from the rest.

Of the classes that remain, [D2n] (number (13), n even) is the only class whose groups are

contained in SO3, so it must be distinct from the rest.

Of the classes that remain, [D2n × Z2] is the only class whose groups contain −I, so by

Fact 2 it (class number (17)) must be distinct from the rest.

The only remaining classes are [D̃2n], [
̂̃
D2n] and [D̂2n]. We will show that [D̂2n] is a distinct

class, but [
̂̃
D2n] = [D̃2n].
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Denote the intersection of SO3 with the preferred representatives of these last three classes

by Ĥ0,
̂̃
H0 and H̃0 respectively. The generators for these groups are

Ĥ0 = ⟨a⟩ ∼= Z2n̂̃
H0 = ⟨a2, ab⟩ ∼= Dn

H̃0 = ⟨a2, b⟩ ∼= Dn.

For D̂2n, the generator −b has been left out by intersecting with SO3, and this makes Ĥ0

cyclic, so by Fact 3 it (class number (14), even) must be in a distinct conjugacy class from

the remaining two.

To see that [
̂̃
D2n] = [D̃2n], create a square root a1/2 of the generator7 a as in Section

2.4. First observe the geometric fact that a−1/2(b)a−1/2 = b. We remark that this cannot be

proven algebraically in terms of generators, and relies entirely on the construction of a1/2 as

an element of SO3. Next observe that a1/2(−a)a−1/2 = −a, and

a
1/2(b)a−

1/2 = aa−
1/2 b a−

1/2 = ab.

Now we calculate:

[D̃2n] = [⟨−a, b ⟩]

= [a
1/2 · ⟨−a, b ⟩ · a−1/2]

= [⟨ a1/2(−a)a−1/2 , a
1/2(b)a−

1/2 ⟩]

= [⟨−a, ab ⟩]

= [⟨−a , (−a)−1 · ab ⟩]

= [⟨−a , −a−1 · ab ⟩]

= [⟨−a,−b ⟩]

= [
̂̃
D2n]

7The generator a is the same for both preferred representatives of these two classes.
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Thus we see that both
̂̃
D2n and D̃2n belong to class number (15) when n is even, or (16)

when n is odd, and this concludes the section on the dihedral classes of Cc(O3).

Case III: p(H) = ⟨a, b | a3 = b3 = (ab)2 = 1⟩

We show that [H] must be either class number (19) or (20). In this case, H must contain

a or −a or both, and b or −b or both. If H contains either −a or −b, then it must contain

−I, and hence H = ⟨a, b,−I⟩ ∼= Tet×Z2 (class number (20)). If H contains neither −a, nor

−b, then −I /∈ H and H ∼= Tet itself (class number (19)).

The groups have different orders, so they must represent distinct conjugacy classes.

Case IV: p(H) = ⟨a, b | a4 = b3 = (ab)2 = 1⟩

We show that [H] must be class number (21), (22) or (23). If H contains −b, then −I ∈ H

and H ∼= Oct × Z2 (class number (23)). If H contains neither −a, nor −b, then −I /∈ H

and H ∼= Oct itself (class number (21)). If H doesn’t contain −b, but does contain −a, then

(−a) and b satisfy the same relations as a and b, and hence generate a subgroup isomorphic

to Oct ∼= S4 (class number (22)). The preferred representative for this last group is TetF .

The group Oct × Z2 clearly lies in a distinct class from the other two groups, because

its order is twice that of the other two. The remaining classes must be distinct by Fact 3,

because Oct ≤ SO3, and TetF ⊈ SO3.

We remark that this alternate, orientation reversing embedding of Oct is referred to as

TetF because it represents the full symmetry group of a tetrahedron. To visualize this,

consider the tetrahedron inscribed inside the cube below, and remember that the cube and

the octahedron have the same symmetry group by duality.
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Case V: p(h) = ⟨a, b | a5 = b3 = (ab)2 = 1⟩

If H contains either −a or −b, then −I ∈ H and H ∼= Ico × Z2 (class number (25)).

Otherwise −I /∈ H and H ∼= Ico (class number (24)).

The classes are necessarily distinct, because their representatives have different orders.

This concludes the proof of Theorem 9 for the case of finite H.

□

3.3. Classification of Compact Lie Subgroups of Positive Dimension up to Con-

jugacy. Let H ≤ O3 be a compact Lie subgroup of dim(H) ≥ 1. By Proposition 8, p(H) is

conjugate to one of S1, O2 or SO3. We handle each of these cases separately:

Case I: [p(H)] = [SO3]

In this case H is clearly either O3 or SO3, and these types have unique, distinct conjugacy

classes (1) and (2).

Case II: [p(H)] = [S1]

We show that [H] must be either class number (3) or (4). Let H0 be the connected

component of the identity in H. H0 is a compact, connected one-dimensional manifold,

and as such diffeomorphic to S1. Since SO3 is connected, H0 ≤ SO3. This implies that
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p(H0) = H0, and we find:

S1 ∼= p(H) ⊇ p(H0) = H0
∼= S1

=⇒

p(H) = H0 ≤ H

If H ≤ SO3, then all three of H, H0 and p(H) groups are the same copy of S1, so H is

conjugate the preferred representative of S1 (class number (3)).

If H ⊈ SO3, then there is some g ∈ H \ SO3. Then p(g) ∈ H, and

g−1p(g) = g−1
(
det(g)g

)
= −I ∈ H.

By Fact 4, H ∼= S1 × Z2. Any group in this class is completely determined by it’s axis of

rotation, and conjugacy is realized by rotations from one axis to the other.

Case III: [p(H)] = [O2]

We show that [H] must be class number (5), (6) or (7). From our analysis in Section

2.4, p(H) has a subgroup isomorphic to S1, and an element b of order two that swaps the

poles where the axis of rotation intersects S2. As we have seen in the previous case (II:

[p(h)] = [S1]), the connected component of the identity H0 is diffeomorphic to S1. We

distinguish three cases.

Either −I ∈ H or not. If −I ∈ H, then Fact 4 applies and H ∼= O2 × Z2 (class number

(7)).

Suppose then that −I /∈ H. H must contain either b or −b but cannot contain both,

because (−b)b = −I. If b ∈ H, then H ⊆ SO3, so [H] = [O2] (class number (5)). If −b ∈ H,

then every element of H preserves the poles of rotation, and the preferred representative in

this case is Ô2 (class number (6)).

The group O2 × Z2 has four connected components, and as such cannot be conjugate to

the other two. Using Fact 3, O2 ≤ SO3 and Õ2 ≰ SO3 cannot be conjugate to one another.

This concludes the proof of Theorem 9 for the case of dim(H) ≥ 1.

■
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4. Construction of Equivariant Skeleta for the Finite Subgroups

Below we list the equivariant decomposition of S2 corresponding to the preferred rep-

resentatives of each conjugacy class in Cc(O3). The decompositions corresponding to the

cyclic and dihedral cases require repeated reference to specific subsets of S2, so we begin by

outlining some notational conventions.

4.1. Preliminaries for Cyclic and Dihedral Cases. Here we make heavy use of the

explicit generators a and b of the preferred representatives of the cyclic and dihedral classes

(8)-(18) as described in Section 3.1. The North pole N and the South pole S will always

be in the 0-skeleton. They will be in the same orbit whenever H contains −1, b or −a. The

point p on the equator will usually be (1, 0, 0), but for all groups with a ̂ decoration p will

be (0, 1, 0). This alternate choice is necessary for the reflective dihedral cases only, and we

will indicate when this is the case.

As a shorthand for referring to certain cells that appear frequently, define the following:

• Mr will be the meridional arc connecting N to S, passing through ar ·p, andM :=M0.

• M+
r will be the meridional arc connecting N to ar · p, and M+ :=M+

0 .

• Er will be the equatorial arc connecting p to ar · p, and E := E1.

• Tr will be the triangular cell spanned by N , p and ar ·p, and T := T1 (having positive

orientation).

• Br will be the bigon spanned by M and ar · M , and B := B1 (having positive

orientation).

4.2. Cyclic Cases and Their Extensions. H = Zn:

For the orientation preserving cyclic cases (even or odd order), we have:

(0) -cells:

OrbΛ(N) ∼=
(
H⧸H

)
×D0

OrbΛ(S) ∼=
(
H⧸H

)
×D0
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(1) -cell:

OrbΛ(M) ∼=
(
H⧸1

)
×D1

(2) -cell:

OrbΛ(B) ∼=
(
H⧸1

)
×D2

H = Z̃2n:

For this group, there are different decompositions depending on whether n is even or odd.

This phenomenon comes from the fact that an is rotation by π radians, so −an corresponds

to reflection across the xy-plane. When n is odd, −an ∈ Z̃2n, but when n is even, −an /∈ Z̃2n.

For n even, we have

(0) -cells:

OrbΛ(N) ∼=
(
H⧸⟨a2⟩

)
×D0

OrbΛ(p) ∼=
(
H⧸1

)
×D0

(1) -cells:

OrbΛ(M
+) ∼=

(
H⧸1

)
×D1

OrbΛ(E) ∼=
(
H⧸1

)
×D1

(2) -cells:

OrbΛ(T2) ∼=
(
H⧸1

)
×D2

For n odd, we have

(0) -cells:

OrbΛ(N) ∼=
(
H⧸⟨a2⟩

)
×D0

OrbΛ(p) ∼=
(
H⧸1

)
×D0
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(1) -cells:

OrbΛ(M
+) ∼=

(
H⧸1

)
×D1

OrbΛ(E2) ∼=
(
H⧸⟨−an⟩

)
×D1

(2) -cell:

OrbΛ(T2) ∼=
(
H⧸1

)
×D1

H = Z2n × Z2:

For this group, we have:

(0) -cells:

OrbΛ(N) ∼=
(
H⧸⟨a⟩

)
×D0

OrbΛ(p) ∼=
(
H⧸⟨−an⟩

)
×D0

(1) -cells:

OrbΛ(M
+) ∼=

(
H⧸1

)
×D1

OrbΛ(E) ∼=
(
H⧸⟨−an⟩

)
×D1

(2) -cells:

OrbΛ(T ) ∼=
(
H⧸⟨1⟩

)
×D2

H = Z2n+1 × Z2:

For this case, we have:

(0) -cells:

OrbΛ(N) ∼=
(
H⧸⟨a⟩

)
×D0

(1) -cells:

OrbΛ(M) ∼=
(
H⧸1

)
×D1
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(2) -cells:

OrbΛ(B1/2) ∼=
(
H⧸1

)
×D2

Full skeleton

Z3 × Z2

Cells in the orbit space

4.3. Dihedral Cases and Their Extensions.

H = Dn:

For the orientation preserving dihedral cases Dn, we have

(0) -cells:

OrbΛ(N) ∼=
(
H⧸⟨a⟩

)
×D0

OrbΛ(p) ∼=
(
H⧸⟨b⟩

)
×D0

OrbΛ(a
1/2 · p) ∼=

(
H⧸⟨ab⟩

)
×D0

(1) -cells:

OrbΛ(M
+) ∼=

(
H⧸1

)
×D1

OrbΛ(E1/2) ∼=
(
H⧸1

)
×D1

(2) -cells:

OrbΛ(T ) ∼=
(
H⧸1

)
×D2
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H = D̂n:

For these groups, choose p = (0, 1, 0). Then we have:

(0) -cells:

OrbΛ(N) ∼=
(
H⧸H

)
×D0

OrbΛ(S) ∼=
(
H⧸H

)
×D0

(1) -cells:

OrbΛ(M) ∼=
(
H⧸⟨−b⟩

)
×D1

OrbΛ(M1) ∼=
(
H⧸⟨−ab⟩

)
×D1

(2) -cells:

OrbΛ(B1/2) ∼=
(
H⧸1

)
×D2

Just as with the Z2n case, the orientation reversing dihedral cases corresponding to the

generator −a, will differ depending on whether n is even or odd.

H = D̃2n (n even):

For n even, we have:

(0) -cells:

OrbΛ(N) ∼=
(
H⧸⟨a2,−ab⟩

)
×D0

OrbΛ(p) ∼=
(
H⧸⟨b⟩

)
×D0

(1) -cells:

OrbΛ(M
+) ∼=

(
H⧸1

)
×D1

OrbΛ(M1/2) ∼=
(
H⧸⟨−an+1b⟩

)
×D1

(2) -cells:

OrbΛ(B1/2) ∼=
(
H⧸1

)
×D2
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H = D̃2n (n odd):

For n odd, we have: we have:

(0) -cells:

OrbΛ(N) ∼=
(
H⧸⟨a2,−ab⟩

)
×D0

OrbΛ(p) ∼=
(
H⧸⟨−an, b⟩

)
×D0

OrbΛ(a · p) ∼=
(
H⧸⟨−an, a2b⟩

)
×D0

(1) -cells:

OrbΛ(M
+) ∼=

(
H⧸⟨−anb⟩

)
×D1

OrbΛ(M
+
1 )

∼=
(
H⧸⟨−an+2b⟩

)
×D1

OrbΛ(E) ∼=
(
H⧸⟨−an⟩

)
×D1

(2) -cells:

OrbΛ(T ) ∼=
(
H⧸1

)
×D2

H = D2n × Z2:

(0) -cells:

OrbΛ(N) ∼=
(
H⧸⟨a,−b⟩

)
×D0

OrbΛ(p) ∼=
(
H⧸⟨−an, b⟩

)
×D0

OrbΛ(a
1/2 · p) ∼=

(
H⧸⟨−an, ab⟩

)
×D0

(1) -cells:

OrbΛ(M
+) ∼=

(
H⧸⟨−anb⟩

)
×D1

OrbΛ(M
+
1/2)

∼=
(
H⧸⟨−an+1b⟩

)
×D1

OrbΛ(E1/2) ∼=
(
H⧸⟨−an⟩

)
×D1
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(2) -cells:

OrbΛ(T1/2) ∼=
(
H⧸1

)
×D2

H = D2n+1 × Z2:

(0) -cells:

OrbΛ(N) ∼=
(
H⧸⟨a,−b⟩

)
×D0

OrbΛ(p) ∼=
(
H⧸⟨b⟩

)
×D0

(1) -cells:

OrbΛ(M
+) ∼=

(
H⧸1

)
×D1

OrbΛ(M1/4) ∼=
(
H⧸⟨−an+1b⟩

)
×D1

(2) -cells:

OrbΛ(B1/4) ∼=
(
H⧸1

)
×D2

4.4. Polyhedral Cases. Duality arguments show that the 5 platonic solids give rise to 3

symmetry groups: icosahedral/dodecahedral, cubic/octahedral, and tetrahedral (the tetra-

hedron is self-dual). By inscribing a platonic solid in S2, we can use projection from the

origin to map the surface of the solid homeomorphically onto S2. This allows S2 to naturally

inherit the structure of a H-CW complex. If H is one of the three polyhedral groups, then

by choosing the icosahedron, octahedron, and tetrahedron, the corresponding CW complex

can be assumed to have triangular 2-cells. It should be noted that this is not the cell de-

composition we will use, but it is the starting point from which we construct our desired

decomposition.

H is any of the orientation preserving polyhedral groups. For these cases, we take the

first barycentric subdivision of each triangular face. Then combine two adjacent triangles if

they come from the same original triangle and both contain a common vertex of the original

triangle in their boundaries. This will result in a decomposition of each face into three
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congruent quadrilateral faces. Using the generators a and b described in Section 3.1, label

the vertices va, vb and vab according to the following condition:

StabΛ(va) = ⟨a⟩, StabΛ(vb) = ⟨b⟩ & StabΛ(vab) = ⟨ab⟩

Since a, b and ab ∈ SO3, they are each a rotation. Thus they each have exactly two fixed

points in S2, and in the surface of the inscribed polyhedron. In order to determine va, vb

explicitly, choose them according to the right-hand rule with both a and b corresponding

to counter-clockwise rotations about va and vb resp. There is exactly one triangle of the

barycentric subdivision which contains va and vb, and has as its other vertex vab, and this is

how vab is determined.

There are two triangles in the barycentric subdivision that share both va and vb as common

vertices. These two triangles join together to form a quadrilateral which we denote by Q0.

Let Ja,0 be the line segment connecting vab to vb, and Jb,0 be the line segment connecting va

to vab. Finally let Q, Ja, Jb, ua, uab and ub be the projections of Q0, Ja,0, Jb,0, va, vab and vb

respectively onto the sphere.

The H-CW decompositions are as follows:

H = Tet or Oct or Ico:

(0) -cells:

OrbΛ(ua) ∼=
(
H⧸⟨a⟩

)
×D0

OrbΛ(uab) ∼=
(
H⧸⟨ab⟩

)
×D0

OrbΛ(ub) ∼=
(
H⧸⟨b⟩

)
×D0

(1) -cells:

OrbΛ(Ja) ∼=
(
H⧸1

)
×D1

OrbΛ(Jb) ∼=
(
H⧸1

)
×D1

(2) -cells:

OrbΛ(Q) ∼=
(
H⧸1

)
×D2
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Figure 2

Tet× Z2 Orientation preserving Orientation reversing

H is any of the orientation reversing polyhedral groups except for Tet×Z2: Here

we take the first barycentric subdivision of each triangular face. Then determine the points

va, vab and vb as before, but do not combine the triangles. Define Ja,0, Jb,0 as before, and

also define Jab,0 to be the line segment connecting va to vb. Now project va, vab, vb, Ja,0, Jab,0

and Jb,0 onto the sphere to form ua, uab, ub, Ja, Jab and Jb respectively. The three arcs Ji

bound a spherical triangle that will be denoted ∆, and this will be our fundamental domain

for the action.

H = Oct× Z2:

(0) -cells:

OrbΛ(ua) ∼=
(
H⧸⟨a,−ba2b2a⟩

)
×D0

OrbΛ(uab) ∼=
(
H⧸⟨ab,−a2b2a⟩

)
×D0

OrbΛ(ub) ∼=
(
H⧸⟨b,−ba2b2a⟩

)
×D0

(1) -cells:

OrbΛ(Ja) ∼=
(
H⧸⟨−a2b2a⟩

)
×D1

OrbΛ(Jab) ∼=
(
H⧸⟨−ba2b2a⟩

)
×D1

OrbΛ(Jb) ∼=
(
H⧸⟨−ba2b2⟩

)
×D1
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(2) -cells:

OrbΛ(∆) ∼=
(
H⧸1

)
×D2

For the case of the full symmetry group of the tetrahedron, we apply the above construction

to the faces of the tetrahedron, and use the generators A and B to determine the cells uA,

uAB, uB, JA, JAB, JB and ∆. Together, A and B generate Tet, so we must also include the

third generator C from Section 3.1. Note that {I, AC,CB,AB} is isomorphic to the Klein

four group. The resultant equivariant cells are then:

H = TetF :

(0) -cells:

OrbΛ(uA) ∼=
(
H⧸⟨A,C⟩

)
×D0

OrbΛ(uAB) ∼=
(
H⧸⟨AC,CB⟩

)
×D0

OrbΛ(uB) ∼=
(
H⧸⟨B,C⟩

)
×D0

(1) -cells:

OrbΛ(JA) ∼=
(
H⧸⟨AC⟩

)
×D1

OrbΛ(JAB) ∼=
(
H⧸⟨C⟩

)
×D1

OrbΛ(JB) ∼=
(
H⧸⟨CB⟩

)
×D1

(2) -cells:

OrbΛ(∆) ∼=
(
H⧸1

)
×D2

H = Ico× Z2:

(0) -cells:

OrbΛ(ua) ∼=
(
H⧸⟨a,−b2ab2a2b2a2⟩

)
×D0

OrbΛ(uab) ∼=
(
H⧸⟨ab,−bab2a2b2a2⟩

)
×D0

OrbΛ(ub) ∼=
(
H⧸⟨b,−b2ab2a2b2a2⟩

)
×D0
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(1) -cells8:

OrbΛ(Ja) ∼=
(
H⧸⟨−bab2a2b2a2⟩

)
×D1

OrbΛ(Jab) ∼=
(
H⧸⟨−b2ab2a2b2a2⟩

)
×D1

OrbΛ(Jb) ∼=
(
H⧸⟨−ab2ab2a2b2a2⟩

)
×D1

(2) -cells:

OrbΛ(∆) ∼=
(
H⧸1

)
×D2

H = Tet× Z2:
9

For this case, we begin by dividing up each 2-simplex into 6 smaller 2-simplices. Start by

connecting the barycenter of each triangular face to the centers of each of its edges using

three straight line segments. Then connect the centers of each of the original edges to one

another using straight line segments. The reader may notice at this point that the triangles

in this decomposition are not all of the same size, and so cannot be contained in a single

orbit under any H ≤ O3. Fortunately when the tetrahedron is inscribed inside S2, each of

these triangles has the same solid angle, so upon projection onto the sphere, these result in

spherical triangles that all have the same area.

Using the generators a and b from Section 3.1, we aim to single out a specific spherical

triangle as our fundamental domain. The element a ∈ SO3 is a rotation of order three, and

must have two poles {±u} ⊆ S2 in it’s 1-eigenspace. The element ab2a = a2ba2 = ba2b =

b2ab2 ∈ Tet ≤ SO3 has order two, so it must correspond to a rotation of π radians about some

axis ℓ. This shows that the element −ab2a ∈ Tet × Z2 corresponds to reflection across the

plane ℓ⊥. Evidently there are precisely two spherical triangles that have a vertex ua ∈ {±u}

whose opposite arc Ja is fixed by the element −ab2a. Choose one of these spherical triangles

and label it ∆′, then the triangle not chosen will be −I ·∆′.

8I am particularly grateful to Daniel Flores for helping me determine these stabilizers.
9The reason this case is set apart from the others is essentially coming from the fact that the tetrahedron

is self-dual. This causes −I to send centers of faces to vertices and vice versa, an effect that does not occur

in any of the other cases.
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Figure 4. A fundamental domain for Tet× Z2

Of the other vertices of ∆′, one of them is stabilized by both ab and −ba, and hence by

K := ⟨ab,−ba⟩ which is isomorphic to the Klein four group. Label this vertex uK , and label

the arc connecting ua to uK as JK . With all of this notation, the H-CW decomposition is:

H = Tet× Z2:

(0) -cells:

OrbΛ(ua) ∼=
(
H⧸⟨a⟩

)
×D0

OrbΛ(uK) ∼=
(
H⧸⟨ab,−ba⟩

)
×D0

(1) -cells:

OrbΛ(Ja) ∼=
(
H⧸⟨−ab2a⟩

)
×D1

OrbΛ(JK) ∼=
(
H⧸⟨1⟩

)
×D1

(2) -cells:

OrbΛ(∆
′) ∼=

(
H⧸1

)
×D2

We comment here that the one-skeleton of quotient space can be taken to be contractible in

the cases where the action is orientation preserving. This is useful in classifyingG-equivariant

vector bundles over the two sphere and in determining whether or not such bundles have
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algebraic models, for more on this see [16]. An approach for this line of reasoning relies

on techniques developed by Hambleton and Hausmann in [6] and [7]. Unfortunately, the

one-skeleton of the quotient space will not be contractible in the case of the orientation

reversing actions. Although these remarks do not affect the proof of Theorem 2, these types

of questions served as a primary motivation to determine the validity of Theorem 2.

5. Proof of Theorem 2

Let α : G×S2 → S2 be a smooth action, and let f : S2 → S2 be the conjugating function

provided by Theorem 1. Define H := Ff (G) ≤ O3 as in Section 2.2. By our observations in

Section 2.1, we may assume that H is the preferred representative of [H] ∈ Cc(O3), and that

the resulting action λ of G on S2 corresponds (via composition with Ff ) to the standard

action Λ of H on S2. We index the cases of the proof by the possible preferred representatives

H. Some of these cases have proofs that are identical, and so the representatives are grouped

by the properties (such as transitivity of Λ) of H that allow for certain arguments.

5.1. Proof of Theorem 2 if H = O3 or SO3.

In these cases, Λ and hence α and λ are transitive actions, and this implies that f was

smooth to begin with. To see this, let p ∈ S2. If q ∈ S2, then by transitivity there is some

g ∈ G such that q = αgp. By the equivariance of f , we have that

f(q) = f(αgp) = λgf(p).

This shows that f is completely determined by the value f(p) and the linear action λ. Let

K := Stabα(p) be the stabilizer of p under α. Conjugating by f shows that this is equal

to the stabilizer of f(p) under λ. By the Smooth Orbit/Stabilizer Theorem, we obtain

diffeomorphisms

Φα : G⧸K → S2 Φλ : G⧸K → S2

gK 7→ αgp gK 7→ λgf(p).
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Thus f can be written as the composition

S2 Φ−1
α−−→ G⧸K

Φλ−→ S2

αgp 7−→ gK 7−→ λgf(p),

and this establishes the cases where H acts transitively. In terms of conjugacy classes, this

proves both the H ∼= O(3) and H ∼= SO(3) cases.

□

5.2. Proof of Theorem 2 if H = S1 or Ô2.

These cases are grouped together because they have two points, the north N0 = (0, 0, 1)

and south S0 = (0, 0,−1) poles, that are fixed under the action λ by every element of G.

Let p0 = (1, 0, 0), and let γ : [0, 1] → S2 be a unit speed parameterization of the unique

meridian which passes through p0 and connects the north pole N0 to the south pole S0.

Define p := f−1(p0), N := f−1(N0) and S := f−1(S0), so that N,S are the unique isolated

fixed points of the action α.

Using the exponential map expα
N , we can map a closed disk DN centered at 0 ∈ TNS

2

diffeomorphically onto a closed neighborhood of N .

Lemma 10. The radius r of DN = Br(0) can be increased until p ∈ expα
N(∂DN).

Proof. Let R := RN be the injectivity radius of expα
N . Since exp

α
N is injective on BR(0), but

not on BR(0), there exist u, v ∈ ∂BR(0) with u ̸= v and expα
N(u) = expα

N(v) =: x0 ∈ S2.

The induced action dα of S1 ≤ G on TNS
2 is orthogonal with respect to the metric ⟨ , ⟩α

by construction, so two vectors in TNS
2 are in the same orbit under dα if and only if they

have the same norm with respect to ⟨ , ⟩α. Since ⟨u, u⟩α = ⟨v, v⟩α = R2, there must be some

g ∈ S1 such that dαgu = v. Note that u ̸= v implies that g ̸= 1 ∈ S1. Using the equivariance
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of the exponential function, we find that

αgx0 = αg exp
α
N(u)

= expα
N(dαgu)

= expα
N(v) = x0

=⇒

x0 ∈Fixα(g) = {N,S}

By the continuity of expα
N and the definition of R, x0 cannot be N , and therefore x0 = S.

For any w ∈ ∂BR(0), there is a unique h ∈ S1 such that dαhu = w. This shows that

expα
N(w) = expα

N(dαhu)

= αh exp
α
N(u)

= αhS = S.

Therefore expα
N maps the entire boundary ∂BR(0) onto S.

The image of expα
N is the quotient of a disk where the boundary is collapsed to a point,

and this is topologically a sphere. Taking this quotient followed by set inclusion, we find

that on the closed disk, expα
N can be factored as:

BR(0) // // im(expα
N)

∼= BR(0)⧸∂BR(0)
∼= S2 � � // S2.

Any injective map from S2 to itself must also be surjective, so p ∈ expα
N(BR(0)). Now let

u ∈ BR(0) be such that expα
N(u) = p. If we set r = ∥u∥, then p = expα

N(u) ∈ expα
N(∂Br(0)) =

expα
N(∂DN)

□

We now continue with the proof of Theorem 2 whenH = S1 or Ô2. Note that exp
α
N(∂DN) =

∂ expα
N(DN) is precisely the orbit of f(p) under α. We perform a similar construction for S,

and find that expα
S(DS) and expα

N(DN) meet up precisely at the orbit of p. The composition

Eα := expα
N ◦ (expα

S)
−1 : ∂DS → ∂DN is an equivariant, orientation reversing diffeomorphism

of their boundaries.



§5.2 Smooth Conjugacy 44

Now we are ready to define f, the smooth replacement for f . Let ηN : [0, 1] → S2 be the

straight line segment connecting 0 to (expα
N)

−1 (p) ∈ ∂DN . Define the curve βN := expα
N ◦ηN .

Define βS : [0, 1] → S2 similarly, except so that it goes in the opposite direction (from p to

S). Finally let β be the concatenation of βN and βS in S2. Define

f(β(t)) := γ(t),

and extend by G-equivariance to all of S2 by requiring

f(αg(β(t))) = λg(γ(t))

.

Let D± be the closed upper (resp. lower) hemisphere of S2. Let DN0 = (expλ
N0
)−1(D+)

and similarly for DS0 . For any point outside of Orbα(p), say in the northern hemisphere, the

map f factors as

f(q) := expλ
N ◦f̂ ◦ (expα

N)
−1 (q)

for some orientation preserving, equivariant identification f̂ of DN with the disk DN0 , and

similarly for the southern hemisphere. Thus the only place where non-differentiability could

occur is at the equator.

Fortunately this is not a major issue. Gauss’s Lemma (in Riemannian geometry, see [4,

Lemma 3.5, p.69]) implies that βN and βS meet Orbα(p) orthogonally (as determined by the

inner product ⟨ , ⟩α), and this implies that β is a smooth arc, possibly after reparameteriza-

tion10.

Away from the poles, the action α is free. Let S2
∗ := S2 \ {N,S}. The Slice Theorem (see

[15, Thm 5.7, p.40]) supplies a smooth map

Ψα : S2
∗ → S2

∗⧸G ∼= (0, 1)

from the (twice-punctured) sphere to the quotient space under α, which we identify with

(0,1). By composing with a diffeomorphism of (0, 1), it is clear that we have many options

10It may be necessary to reparameterize to ensure that the magnitude of the velocity is C1
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for this identification. Since β is a smooth arc, we may choose an identification that satisfies:

Ψα

(
β(t)

)
= t

If we take the product of this map Ψα with the map Φα supplied by the Smooth Or-

bit/Stabilizer Theorem, this produces a cylindrical coordinate chart on S2
∗ :

Φα ×Ψα : S2
∗ → S1 × (0, 1)

Let ι : S1 ↪→ G be the inclusion of the circle subgroup into G. For all x ∈ S2
∗ , the chart

map above satisfies

α (ι ◦ Φα(x), β ◦Ψα(x)) = x.

A sybolic shuffling of our notations easily reveals that a factorization of f when restricted to

S2
∗ is given by

f = λ ◦
(
ι ◦ Φα

)
×
(
γ ◦Ψα

)
This shows that f is also differentiable at the equator, and is thus differentiable everywhere

on S2.

□

5.3. Proof of Theorem 2 if H = S1 × Z2, or O(2), or O(2)× Z2.

For these conjugacy classes, the construction is similar to that of case 5.2, except that once

we have specified βN , f is already completely determined.

It is worth mentioning that Gauss’s Lemma is necessary once again to ensure that f is

smooth in neighborhoods of Orbα(p).

5.4. Proof of Theorem 2 if H is a finite subgroup of SO(3).

If H is finite, then let Yi be the H-equivariant i-skeleton of S2 as described in Section 4.

Using this, we will define f through a three-step process:

(i) Define f0 to agree with the restriction of f to X0 := f−1(Y0), and extend this to disk

neighborhoods of the vertices of X0 using the exponential map.

(ii) Use f−1(Y1) to construct a ‘suitably smooth’ 1-skeleton X1, and extend f0 to f1 by

requiring it to take an equivariant tubular neighborhood of X1 to that of Y1.
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(iii) Extend f1 to the remaining fundamental domain, and extend to all of S2 by equivariance

to define f.

To begin, notice that H-CW decomposition of S2 with respect to the standard action Λ

is a G-CW decomposition with respect to the action λ. Define X0 := f−1(Y0). Let the set

P ′
0 := {yC}C∈P0 consist of the representative points listed in Section 4 (such as N, p, ua etc.)

whose orbits define the equivariant 0-cells, and let xC = f−1(yC) for each yC ∈ P ′
0. Define

U r
0 : =

∪
x∈X0

expα
x(Br(0)), and

V r
0 : =

∪
y∈Y0

expα
y (Br(0)),

then choose an ε > 0 such that U ε
0 and V ε

0 are disjoint unions of disks.

Next, let the set {li}mi=1 =: P ′
1 (m ≤ 2) be an enumeration of the representative arcs from

Section 4 whose orbits determine the equivariant 1-cells (e.g. M,E1/2,M
+
1/2 etc.). Define σi

and τi to be the source and terminus of the arc f−1(li). Careful inspection of the li for any

orientation preserving group shows that it is possible to reorder the arcs so that τi = σi+1

for each i < m. In other words it is possible to create a path from σ1 to τm by concatenating

the representative arcs li.

Let λ′ and α′ be the restrictions of the actions λ and α respectively to the subgroup

K := Stabλ(yC) = Stabα(xC). Let

LC :
(
TxC

S2, dα′)→ (
TyCS

2, dλ′
)

be any equivariant, linear isometry of the tangent spaces that preserves orientation if deg(f) =

1 and reverses orientation if deg(f) = −1. These exist by Theorem 5. Finally, complete the

first step by defining:

f0 := expλ
yC

◦LC ◦ (expα
xC
)−1
∣∣
expαxC

(Bε/2(0))
for every yC ∈ P ′

0,

and extending this by equivariance to all of U
ε/2
0 .
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Our current goal is to replace each continuous arc f−1(li) with a suitable smooth arc ei.

Choose some δ > 0 small enough that

Bδ(f
−1(li)) ∩Bδ(f

−1(lj)) ⊆ U ε
0 , i ̸= j.

Let e1 be a smooth arc that:

(i) agrees with f−1
0 (l1) on U

ε/2
0 ,

(ii) is contained in U ε
0 ∪Bδ(f

−1(l1)), and

(iii) is transverse to every expα
σ1
(∂Br(0)) and expα

τ1
(∂Br(0)) for ε/2 ≤ r ≤ ε.

These conditions merit some explanation. The first condition is forced upon us by the fact

that we have already defined f0 and we desire f(e1) = l1 for some extension f. The second

condition guarantees that e1 connects σ1 to τ1 in the same way that f−1(l1) does, so that our

resultant 1-skeleton will have the same combinatorial structure as Y1. The third condition

guarantees that e1 ∩ αg(e1) = ∅ whenever g ∈ G is non-trivial. All of these conditions can

be guaranteed by combining techniques of elementary approximation theory. If G is cyclic,

this is the only arc that we must replace, otherwise we must repeat this process once more:

Let e2 be a smooth arc that:

(i) agrees with f−1
0 (l2) on U

ε/2
0 ,

(ii) is contained in
(
U ε
0 ∪Bδ(f

−1(l2))
)
\

( ∪
g∈G

αg(e1)

)
, and

(iii) is transverse to every expα
σ2
(∂Br(0)) and expα

τ2
(∂Br(0)) for ε/2 ≤ r ≤ ε.

The alternate set in condition (ii) is clearly necessary, as our arcs should only intersect at

their endpoints. Let Θ be the set mentioned in condition (ii). In order to know that such

an e2 can be constructed, it will suffice to show that f−1
0 (l2) lies in the same component of Θ

as f−1(l2) ∩ expα
σ2
(∂Bε(0)). If they weren’t in the same component, then this would imply

that det(LC) = − deg(f) which contradicts the construction of LC , so such an e2 exists.

We can now freely define f1(ei) = li. By the Slice Theorem, it is possible to construct

α-equivariant11 tubular neighborhoods U(ei) ⊆ S2 of the ei which we may assume to be

disjoint outside of U
ε/2
0 . Similarly there are λ-equivariant tubular neighborhoods V (li) of

11The astute reader will notice that the stabilizers of every 1-cell in each of the orientation preserving

groups are all trivial. This means that the full power of the Slice Theorem is not necessary here, because
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each li. If we set

U1 : = U0 ∪
m∪
i=1

∪
g∈G

αg (U(ei)) and

V1 : = V0 ∪
m∪
i=1

∪
g∈G

λ (V (li)) ,

then we can extend f1 to an equivariant map f1 : U1 → V1.

What remains is to extend the map to our fundamental domain. Let DU be any connected

component of S2 \U1. There is only one component of S2 \V1 that intersects f(D). Let this

region be called DV . So far we have constructed a diffeomorphism f1
∣∣
∂
: ∂DU → ∂DV , and

we would like to extend this map to a diffeomorphism of DU to DV .

Since the disk is null-homotopic, we can clearly extend f1
∣∣
∂
to a map DU → DV . This

map can be made to be a homeomorphism. There is a well defined obstruction theory

for smoothing homeomorphisms of Dn that are diffeomorphisms on Sn−1, that was initially

defined by Munkres in [11]. In an earlier paper [10] Munkres also showed that the groups in

which such obstructions lie are trivial for dimensions ≤ 3. Thus we are able to extend f1 to

a diffeomorphism of DU onto DV .

Finally we extend this by equivariance to a diffeomorphism of f : S2 → S2, which will be

equivariant by construction.

5.5. Proof of Theorem 2 if H ≤ O3 is a finite subgroup ⊈ SO3.

In this case, G may or may not contain (possibly multiple) copies of Z2 as a reflection.

This implies that the fixed point sets of each reflection is a smoothly embedded copy of S1.

If there are no elements in G that correspond to a reflection across a plane, then the above

procedure can be carried out just as before. If there are elements such as this, then the

construction above can be carried out with a few caveats.

there is no group action. However this general construction will be important for when the actions do not

preserve orientation.
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The embedded S1s are a necessary part of the 1-skeleton, and cannot be altered. This is

actually convenient, because it means that instead of replacing each f−1(li) with ei, we can

simply use the f−1(li) because they are already smooth arcs.

The proof in these cases relies on the full power of the Slice Theorem, which was not strictly

necessary for the orientation preserving case. This is because now edges are allowed to have

nontrivial stabilizers (reflections across themselves), and so the tubular neighborhoods must

be equivariant.

This exhausts all possibilities for [H] ∈ Cc(O3) and hence concludes the proof of Theorem

2 in its entirety.

■

6. Proof of Corollary 3

In this section we drop the assumption of effectiveness, and address this possibility specif-

ically. Following Palais [12], let D := Diff(S2) be the group of diffeomorphisms of S2 under

composition, and let A := A(SO3, S
2) be the space of continuous homomorphisms from

SO3 → D, where both are topologized with the compact-open topology. As in Section 2.1,

this space can be naturally identified with the space of smooth actions of SO3 on S2. Since

SO3 is simple and compact, any homomorphism in A is either trivial or an embedding12.

We only wish to consider effective actions, so let E := {α̃ ∈ A | ker α̃ = 0}.

There is an action Υ : D×A → A that is given by conjugation. That is to say, if α̃ ∈ A is

the associated homomorphism of a smooth action α : SO3 × S2 → S2, f ∈ D and g ∈ SO3,

then Υ is defined by

Υ(f, α̃)(g) := f ◦ αg ◦ f−1 = (Υf α̃)g

This action of D preserves the kernels of each element of A, so it restricts to an action on

E. Theorem 2 shows that for all α̃ ∈ E, there is some linear action λ̃ ∈ E, and some element

f ∈ D that satisfies Υf α̃ = λ̃. Conjugation by a change of basis matrix shows that there is

no loss of generality in assuming that λ̃ is the standard inclusion of SO3 ↪→ D. This shows

12Here by an embedding we mean both a homomorphism and a homeomorphism onto its image.
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that all effective smooth actions α̃ are in the same Υ-orbit as the standard inclusion, so the

action Υ is transitive on E. Clearly the trivial homomorphism 1 : g 7→ idS2 is alone in its

orbit, so we obtain the Υ-equivariant decomposition A = E ⊔ {1}.

If f ∈ StabΥ(λ̃), then Υf λ̃ = λ̃, or in other words,

f ◦ λg ◦ f−1 = λg, ∀g ∈ SO3 or f ◦ λg = λg ◦ f, ∀g ∈ SO3

Let x ∈ S2, and let g ∈ SO3 be such that λg is a non-trivial rotation about the axis

determined by x. For any f ∈ StabΥ(λ̃), we have that

λg
(
f(x)

)
= f

(
λgx
)
= f(x)

=⇒

f(x) = ±x

=⇒

f = ±I ∈ SO3 ≤ D

Hence we find that StabΥ(λ̃) = {±I}. Both SO3 and S2 are compact, so by [12, Cor. 2],

we have that

Diff0(S
2) ∼= D⧸{±I} = D⧸StabΥ(λ̃)

∼= OrbΥ(λ̃) = E,

where Diff0(S
2) is the subgroup of orientation preserving diffeomorphisms of the sphere. This

proves the corollary.

□
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