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3 S. C. Sanford §1.0

1. INTRODUCTION

Mathematicians have been interested in group actions on spheres since before the algebraic
description of a group was defined. The rotational and reflective symmetries of the circle
and of S? were naturally among the first to be considered. When we restrict attention to a
compact topological group, there is a classic theorem of Kerékjarté to the effect that for S2,

these are essentially the only actions:

Theorem 1 (Kerékjarto, [3]). Every continuous, effective action of a compact topological
group G on S?% is topologically conjugate to a linear action (to the standard action of a

subgroup of Oz on S? as a subset of R3).

Thus in the topological category, in order to understand all effective actions of compact
groups on S?, it is enough to understand the subgroups G' < O3 and their actions via matrix
multiplication on S? C R3 (henceforth referred to as linear actions). The higher dimensional
analogues of this theorem are decidedly false, as shown by Bing [1] and others, so Kerékjartd’s
result can be seen as a statement about how restrictive low dimensional actions can be.

Whenever there are two actions a, A : G x X — X, the phrase topologically conjugate in
the above theorem simply means that there is a homeomorphism f : X — X that for all

g € G satisfies f(a(g,z)) = A(g, f(x)), i.e. the following diagram commutes:

Gx X 2o X

w| |

GxX — X
A

In other words there is an equivariant homeomorphism between the corresponding G-
spaces (X, ) and (X, \). We will refer to an equivariant map between two G-spaces with
the same underlying set as a conjugating function (from a to \).

For effective actions, the existence of the conjugating function f tells us important alge-
braic information about the structure of GG, but the fact that the map f is continuous is

an added benefit that should not be overlooked. If we were to take G to be a compact Lie
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group, with a smooth action, it would be natural to expect then that f could be assumed

smooth as well. This turns out to be true, and is the content of our main theorem:

Theorem 2. Every smooth, effective action of a compact Lie group on S? is smoothly con-

jugate to a linear action.

In other words, given these extra assumptions on the group action, we may take the
conjugating homeomorphism supplied by Theorem 0 to be a diffeomorphism. This result
was stated as fact in the survey article 4] with reference to a forthcoming (at the time)
paper of Edmonds [6]. Actually Edmonds makes no statement to this extent, and we have
found no further references in the literature. Certainly such an extension is a desirable
result, and despite having been assumed to be true, deserves to be written down explicitly.
To justify this claim, we offer here an interesting corollary of Theorem B for the transitive

case:

Corollary 3 (Essentially due to Palais, [12]). Every continuous, homomorphic embedding of
SOs into Diff(S?) is the result of conjugating the standard inclusion \ by a unique orientation

preserving diffeomorphism.

In Section 6 We will show that this corollary follows easily from Theorem B, together with
a powerful theorem of Palais [12, Cor. 2| regarding the topology of spaces of smooth actions.
The current paper was inspired by a more recent article of Kolev [8], wherein Theorem [
is reproven using modern techniques. Some of the topological arguments that carry over to
the smooth category are borrowed from this article, and I am indebted to him for writing it.

Thanks are also due to Heiner Dovermann for his ideas, advice and patience.

2. PRELIMINARIES

2.1. Group Actions. The material for this section can be found in Bredon [2, p.32]. A

G-set (X, ) is a set X together with a function o : G x X — X subject to the following
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conditions:

ale,x) =z Vre X, and

a(g,a(h, x)) =a(gh,z) Vg,heG & z € X.

These conditions guarantee that the maps a(g, —) : X — X are each bijections, and that
a(g™', —) is the inverse of a(g,—). We will employ the standard notation for these maps

ay(z) = a(g, ). With this convention, we can write the properties above succinctly as:

a. =idx, aqgoap=oag, a;1= Oég_l

The map « is referred to as the action (of G on X). Occasionally, when the action is
well understood, a G-set (X, «) will be referred to simply as X. We will have occasion to
consider multiple actions o and A on the same set X, giving rise to the G-sets (X, «) and
(X, A). Whenever the underlying set is understood, it is often useful to refer to the actions
themselves, without mention of X.

If (X,«) and (Y, 3) are two G-sets, a map f : X — Y is said to be G-equivariant if the

following diagram commutes:

GxX — X

w| |

GxY —Y
B

If the group G is a topological group, and X is a topological space, it makes sense to
consider continuous actions. Similarly if G is a Lie group, and X is a smooth manifold, it
makes sense to consider smooth actions and we specialize our discussion to this case from
Nnow on.

For any smooth manifold X, the set Diff(X) is defined to be the set of all diffeomorphisms
of X. This set has a natural group structure with composition of maps as multiplication. For

every smooth group action « of a Lie group G on X, there is an associated homomorphism

& defined by



§2.1 Smooth Conjugacy 6

a:G—Diff(X), a:gm—ay

If o has the property that for every g € G, there is some z € X such that ay(x) # x, we
say that the action is effective. This condition is equivalent to the statement that ay = idx
if and only if ¢ = e. Said another way, and action is effective precisely when ker(&) = {e}.
The First Isomorphism Theorem implies that a(G) = G/ker(d)7 and so an effective action
is one whose associated homomorphism & is a homomorphic embedding of G — Diff(X). In
some sense, this shows that the only ‘interesting’ actions are effective, and in light of this we
will only consider effective actions in this paper.

Given a group action a of G on X, there are particular subsets of both G and X that yield
important information about a. For an element g € G, the set Fix,(g) := {z € X | ay(x) =
x} is called the fized point set (of g). The set

Fix,(G) :== ﬂ Fix,(g)

geG

is the set of fixzed points of the action .

Dually, for an element x € X, the set Stab,(z) := {g € G | oy(x) = z} is called the
stabilizer of x (under «). The set Stab,(z) is easily seen to be a subgroup of G for any
x € X, and if G is a topological group, Stab,(z) is a closed subgroup. For an element
x € X, the set Orb,(z) := {oy(z) € X | g € G} is called the orbit of x (under «).

For any element y € Orb, (), there is some g € G such that gr = y. If h € Stab,(x), then
ghg~(y) = gh(z) = g(x) = y, and so ghg™! € Stab,(y). This shows that the elements of a
given orbit have stabilizers that are conjugate to one another, i.e. Stab,(gx) = gStab,(z)g™'.
The collection {Orb,(z) | x € X} of all orbits of elements in X is called the quotient space
(of the G-set (X, a)) and is denoted by X/G' The relevant theorem that relates orbits and

stabilizers is the following:

Theorem 4 (Smooth Orbit/Stabilizer Theorem). If a is a smooth action of a compact Lie

group G on a compact manifold X, then

G/Staba(:c) = Orba ()
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i~ )

where =’ means diffeomorphism, and the coset space has the canonical induced smooth

structure.

For more details and a proof of this theorem see Bredon [2, Cor. 1.3, p.303]. The above
has as a special case, a more classical version of the Orbit/Stabilizer Theorem, which says

that |G| = |Stab,(x)| - |Orb,(z)| whenever G and X are both finite.

2.2. Perspective on Groups. To prove Theorem B, we would like to replace the conjugat-

ing homeomorphism f supplied by Theorem 0 with an equivariant diffeomorphism f.

Important Note: Throughout this paper, § will refer to the equivariant diffeomorphism we

are attempting to construct.

During the proof of Theorem B, we expect to consider all smooth, effective actions a of a
compact Lie group G on S?. The conjugating function f will allow us to associate a matrix
group F(G) to the given group G. Our case by case proof of Theorem @ will be indexed by
preferred representatives of the possible conjugacy classes of F(G) within the matrix group
Os3. This section establishes these ideas.

The set, O3 := {A € M3(R) | A" = A~'} forms a group under matrix multiplication. The
group O3 has a natural action p : O3 x R* — R3 by multiplication of a vector by a matrix:

(A,v) — Av. If (A,v) € O3 x S?, then

| Av|| = v/(Av)t(Av) = VUt At Av = Voto = ||u]| = 1,

Thus the action g restricts to a map A := g |p,xs2. The map A is a smooth action of
O3 on S?%, and will be referred to as the standard action. The associated homomorphism
A : O3 < Diff(S5?) will be referred to as the canonical inclusion.

Now suppose « is a smooth action of a compact Lie group G on S?. By Theorem [, there
is a homeomorphism f : S? — S? such that foa,o f! is a linear transformation for all
g € G. Let Fy(g) be the matrix corresponding to f o ;o f~1 in the standard basis for R?.
If we set A(g,2) = foa,o f~1(x) = F(g) - z, this defines a linear action A : G x 5% — S2.
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We have the following relationships between o, A\ and A:

f(@(ga fﬁl(x))) = )\(g,:v) = A(Ff(g),l’)
foagofil = Ay = Ap(y)

5\=/~\0Ff

Once we have found the linear action A, conjugation by an element h € O3 gives rise to

another linear action A" of G, defined by )\Z = hA,h~! for each g € G. This yields

Nof=foay
—
h_lAZhof:foag
—
Aro(ho f)=(hof)oay
—

Fhop(g) = h-Fy(g)-h™"
—

Frop(G) = h - Fy(G) - h™.

Our goal is to find a smooth conjugating function f from « to the a linear action A. Since
A\ is also a linear action, we could just as easily find a smooth conjugating function from o
to A" and this would also prove Theorem B for the action «. In fact, ko f is smooth if and
only if f is smooth, so we are free to choose whichever h € O3 makes A" particularly nice.
Now A" is the standard action of h- Ff(G)-h™!, so we know that every smooth action « of a
compact Lie group on S? is topologically conjugate to the standard action of some preferred
representative of the conjugacy class determined by F((G).

For K < Oj define the conjugacy class [K] := {hKh™' | h € O3}, and the set C.(O3) :=

{[K]| K < Osis a compact, Lie subgroup} of all conjugacy classes of compact Lie subgroups.
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In Section B, we will determine a system of distinct representatives” of C..(O3) that will serve

as the indexing set for the cases of the proof of Theorem .

2.3. G-CW Complexes. In the case where [Ff(G)] € C.(Os) is the conjugacy class of
a finite subgroup of Oz, the proof of Theorem B proceeds by building up a new, smooth
map f piece by piece. This is done by defining fy to be f restricted to a finite subset
Xo of S?, then taking successive extensions of fy to larger and larger subsets. In order
to carry out such a construction, it is necessary to have an increasing sequence of subsets
Xo C X, C X, = S? that are invariant under the action A of G corresponding to our chosen
representative F¢(G) < Os. The structure we will need is known as a finite G-CW complex,
and is an equivariant version of the more well known finite CW complex which we define
presently.

Let X be a topological space. A subset of C' C X is called an n-cell if it is homeomorphic
to the open unit disk D" := {v € R" | ||v|| < 1}, and is called a cell if it is an n-cell for some
n € N. For a cell C, we define dim(C') = n if C' is an n-cell. By L.E.J. Brouwer’s Theorem
on Invariance of Domain, dim is well-defined.

A finite CW complex (X, P) is a Hausdorff space X together with a partition P of X into

finitely many cells, subject to the following criteria

e For every C' € P with dim(C) = n, there is a continuous map ¢¢ from the closed
unit disk D" := {v € R" | ||lv|]| < 1} to X with the following two properties:
(i) The image ¢c(S™ ') is contained in a union of cells of P whose dimensions are
strictly less than n.
(ii) The restriction of ¢ to D" is a homeomorphism onto its image im(¢c| o) =

CCX.
Now we will modify this construction so that it nicely incorporates a group action.

IThese will be the ‘nice’ preferred representatives that we referred to earlier.

2This definition is only valid for finite CW complexes. The closure-finite and weak topology axioms for a

general CW complex are automatically satisfied for finite complexes.
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Let (X, ) be a G-set where X is a topological space, and \ is a continuous action®. An
equivariant n-cell is a subset C' C X that is equivariantly homeomorphic to G/ He X D",
where G acts by left multiplication on the left factor and trivially on the right factor, for
some closed subgroup Ho < GG. A subset C' is called an equivariant cell if it is an equivariant
n-cell for some n. Define dim(C) = n if C' is an equivariant n-cell.

A finite G-CW complex (X, A, P) is a triple where (X, \) is a Hausdorff G-space, and P

is a partition of X into equivariant cells, and the following conditions hold:

e For every C' € P with dim(C') = n, there is a continuous map ¢¢ from G/ He ¥ Dn
to X with the following two properties:
(i) The image ¢¢ (G/ He % S"‘1> is contained in a union of cells of P whose di-
mensions are strictly less than n.

(ii) The restriction of ¢¢ to G/ He % D" is an equivariant homeomorphism onto C.

In either the plain or equivariant case, the map ¢¢ is called a characteristic map for the
cell C. If (X, P) is a finite CW complex or (X, A, P) is a finite G-CW complex, define the
collection P, := {C € P | dim(C) < k}. The k-skeleton of X is then defined to be the

subset:

The definition of an equivariant cell ensures that the quotient space X/G inherits the
structure of a CW complex when it is endowed with the quotient topology from X. If
(X, \, P) is a G-CW complex and ¢ € X, then ¢ € C for a unique C' € P. Thus by definition
of an equivariant cell, there is map ¢¢ and a corresponding (9H¢, x) € G/ He % D™. By the
Orbit/Stabilizer Theorem, G/ Hy = Orby(c) € X/G. This shows how the equivariant cell C
corresponds to a unique (non-equivariant) cell in the quotient space.

In Section @ we will construct explicit decompositions of S? into equivariant cells for the

standard action of the chosen representatives discussed in Section B

3In other words, (X, \) is a G-space.
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2.4. Facts About the Groups O3 and SOs3. Here we establish some important facts
about O3 and SO3. Firstly there is a homomorphic projection p : O3 — SO;3 that we will
need in order to classify the elements of C.(O3). Secondly every element of SOj is either the
identity matrix I, or a rotation about some axis through the origin in R3. Finally we quote
a classification theorem for finite subgroups of SOj3, and strengthen it to meet our needs for
Theorem B.

For the first fact, note that the determinant defines a homomorphism det : O3 — {£1}.
The kernel of det is the set of elements of O3 that preserve orientation, otherwise known as
SOj3. The center of O3 is the subgroup {£7}. The element —I has determinant det(—1) =
(—1)> = —1,80 —I ¢ SO3. Let a € O3, and assume standard matrix notation of —a := —1I-a.
If det(a) = —1, then det(—a) = det(—1 -a) = (—1)(—1) = 1 and we find that —a € SO;.

Define a map
p:03— SO3, p:awrsdet(a)-a

Evidently p is a homomorphism, and what’s more, it is a surjection that is split by the subset
inclusion map : ¢ : SO3 — Os. Because of this, it is easy to see that O3 = {£1} x SO3
(a = (det(a),det(a)a)), and that under this isomorphism p corresponds to projection onto
the second factor. Knowing that p is a projection is helpful for analyzing Oz, but thinking

of p as a geometric projection is often misleading. Here is an example:

-1 0 0 -1 0 0 1 0 0
P o 1 0/]l=C-]0 10l =10 -1 0
0 01 0 01 0 0 -1

This shows that applying p to reflection across the yz-plane produces rotation by 7 radians
about the z-axis.

Let us examine how knowledge of the isomorphism O3 = {1} x SO3 allows us to distin-
guish between conjugacy classes. Let H, K < Os.

Since p is a homomorphism, [H]| = [K] € C.(Os) implies [p(H)| = [p(K)] = C.(SO3). The

contrapositive is

Fact 1. [p(H)] # [p(K)] implies [H] # [K].
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Suppose that —1 € H and —1I ¢ K. Since —1I is central in O3, —I € gHg™! for all g € O3

and so [H] # [K]. For reference, we have:
Fact 2. —1 € H and —1 ¢ K implies [H] # [K]

The kernel of the determinant map restricted to H is H N SO3. This kernel must be

preserved under conjugation, and so another tool will be:
Fact 3. [H N SOs] # [K N SO3] implies [H] # [K].

The map p : O3 — SOj3 is a two to one covering map. If —1 € H, then +h € H for every
h € H and since —I is central in Oz, —I commutes with every element of H. This gives is

our fourth and final tool:
Fact 4. If -1 € H, then H = {£I} x p(H)

Now we examine SO3. Note that every element of a € SO3 has a 1 as an eigenvalue, for

consider det(a — I):

det(a — I) = det(a — aa') = det(a) det(I — a") = (—1)*det(a — I)
—

det(a — 1) =0.

Now set e; to be a unit vector in the 1-eigenspace of a. Extend the set {e; } to an orthonormal

basis {ey, €s, e3} of R3. With this basis, the condition a’ = ¢! implies that a has the form:

1 0 O
0 =z vy,
0 —y =z

where 1 = det(a) = ? + y*. This shows that a is a rotation (possibly by 0 radians) about
the axis determined by e;. Let § € R be such that x = cos(f) and y = sin(#), and with
minimal absolute value among such angles. For the limiting case where 6 could be 7 or —7

we make the arbitrary choice 6 = .
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Define a'? to be the matrix

1 0 0
0 cos(?2) sin(?))
0 —sin(?2) cos(?/2)

Then we have that a'/? € SOs, and (a'/?)? = a € SO3. By repeating this argument, we can
construct a'/*, a'/® etc.

Now suppose H < SOj is a closed Lie subgroup of dim(H) > 1. We will show that H
must contain a subgroup isomorphic to S'. If a € H, then a must be a rotation about
some axis in R3. If a corresponds to a rotation by a rational multiple of 7, then a has finite
order. Since dim(H) > 1, H must contain elements of infinite order, and these necessarily
correspond to rotations by irrational multiples of 7. Let ¢ be such an element and let ¢ be
its axis of rotation. The subgroup (¢) < H is dense in the subgroup of all rotations about ¢,

so the closure K = (c) is isomorphic to the circle group S*. Since H is closed, K < H.

To prove Theorem B, there will come a point when we need to know the following fact:

Theorem 5. Fvery finite subgroup of O is either cyclic, or dihedral. The group Zs has two
distinct conjugacy classes: one that preserves orientation, and one that does not; and any

other subgroups are conjugate within Oy if and only if they are isomorphic.

We will not prove Theorem B here, but rather suggest that the interested reader refer to
Rees [[3, Thm 9, p.22] for the classification up to isomorphism, and attempt to prove the
conjugacy classification themselves as it is not difficult. We will need the analogue of this for
dimension three as well, but it will not come so easily. We begin working our way towards
this three dimensional version with a well known result. In Wolf’s classical text ‘Spaces of

Constant Curvature’[lI7], he proves a classification result for finite subgroups of SOs:

Theorem 6 (Wolf, Thm 2.6.5, p.85). Every finite subgroup of SOs is either cyclic, dihedral,
tetrahedral, octahedral or icosahedral. Furthermore, any two such subgroups are conjugate

within SO3 if and only if they are isomorphic.
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Using the decomposition provided by the projection p, we know that a = det(a)p(a).

Conjugation by an element in O3 gives
aHa ' = det(a)p(a)Hp(a) ' det(a) = p(a)Hp(a)™".

This shows that conjugation of some H < SO3 < O3 by elements in Oj is equivalent to

conjugation within SO3. Thus we obtain an easy extension of Theorem B:

Corollary 7. Fvery finite subgroup of SOs s either cyclic, dihedral, tetrahedral, octahedral
or icosahedral. Furthermore, any two such subgroups are conjugate within Os if and only if

they are isomorphic.

We will need a similar classification result for the case of compact Lie subgroups of SOj3

up to conjugacy, and we present a direct argument for this classification here.

Proposition 8. If H < SOj is closed, and dim(H) > 1, then H is conjugate to either S,
St % Zsy or SOs.

Proof. Let H < SOz with dim(H) > 1. By our discussion above, there is some K < H
with K = S'. Let £, be the z-axis, and let £ be the axis of rotation of (all elements of) K.
Let p € SO3 be any rotation that maps ¢, onto ¢. If K = H, then H is conjugate via p to
the embedding of S! as rotations about £,. Any other embeddings H’ of S! into SO; are
completely determined by their 1-eigenspace ¢'. Since these are conjugate to rotation about
(., they are all conjugate to one another.

Whenever we need to refer to the image A,(Y) of a subset Y C R* under the linear
transformation A,, we will use the notation g - Y.

If K C H, there is some g € H\ K C SO3. This element g must also have a nontrivial
1-eigenspace, say L. Notice that L # ¢, for otherwise this would imply that g € K. There
are two possibilities: g - # ¢, or g-{ = /.

Case 1: There is some g € H \ K such that g - ¢ # (. If such a g exists, then the points
{#u} = L N S? have as stabilizer the subgroup gKg ' = S'. Thus H acts with two

distinct infinite stabilizers. This guarantees that H acts transitively on S?, and hence that
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H = SO; (see for example Kolev [8, Lemma 6.3, p.210]). The only subgroup of SOj that

acts transitively on S? is SOs itself, so H = SOs.

Case 2: For every g € H\ K, g-¢ = (. If this is the case, then since L # ¢, g must swap
the fixed points £v € £ N S? of K. This implies that g corresponds to rotation of 7 radians
about the line L, and L C ¢*. This further implies that H contains the elements g for every
0 € K, and every element of this form is a rotation of 7 radians about some line L' C ¢*.
It is a simple matrix calculation to see that gfg = 67!, and hence H = S' x Z,. All of
the homomorphic embeddings of S! x Z, inside of SO3 are completely determined by the
1-eigenspace ¢ of the S! subgroup, and are hence conjugate to one another by a rotation.

O

2.5. Riemannian Geometry. Here we assume the reader has familiarity with the notions
of smooth manifolds and their tangent bundles. A good introduction to this topic, as well as
the finer points of Riemannian Geometry is do Carmo’s book [d], and we assume a working
understanding of chapters 0 and 1 from this text.

A Riemannian metric on a smooth manifold M is an assignment of an inner product (, ),
to every tangent space T,,M, in such a way that if X and Y are any smooth vector fields on

M, then the map myy : M — R defined by

myy:prH— <xp>yp>p

is smooth. A pair (M e >) of smooth manifold together with a Riemannian metric is called
a Riemannian manifold. By a partition of unity argument?, it can be shown that every
(paracompact) smooth manifold admits a Riemannian metric. If « is a smooth action of G

on M, then the metric is said to be a-invariant if for any u,v € T,,M,
{dagu, dogv) o, m) = (u,v)p

for every g € G.
Here we introduce the Haar integral following the presentation of Bredon in [2, p.11], and

use it to prove the existence of a-invariant Riemannian metrics.

4This is given as problem 2-C in [0, p.23]
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To every Lie group G, one can associate the vector space C*°(G,R) of smooth maps from
G to R. This vector space inherits a partial ordering from the partial ordering < on R:
¢ < 1 if and only if ¢(g) < ¥(g) for all ¢ € G. For any r € R, let r : g — r denote the
constant function sending all of G to 7.

Let ¢ € C*°(G,R), and g,h € G. Define the linear operator R, : C*(G,R) — C>*(G,R)
by Ry¢(h) := ¢(hg). If G is compact, then there exists a unique function J: €*(G,R) — R

called the Haar integral, that is R-linear, monotonic and satisfies:

o (Normalized) J(1) =1
o (G-invariant) J(R,¢) = J(¢) for all ¢ € C(G,R) and g € G.
Using this, we will create a new a-invariant metric from the old one. Let a be a smooth
action of G on M, let p € M and u,v € T,M. Define a function ¢, ,(h) := (doy,u, dopv)a, p)-

The function ¢, ,(h) essentially uses the metric (, ) to measure how the diffeomorphism ay,

affects the tangent vectors v and v. Let us verify a way in which two of our notations relate:

¢dagu,da9v(h) = <dah(da9u), d&h(d%v»ah(ag(p))
= (dangu, dogv) e, ()

= bun(hg) = Ryouu(h)

—

gbda u,dogv — R ¢u,v'
g g 9

Using ¢y, we define a new Riemannian metric (, )* by the equation:

<u7 U>§ = J(Qbu,v)

The fact that J is monotonic forces this to once again define an inner product on each
tangent space. The fact that ¢, ,(h) is a smooth function of u, v and h, shows that this

assignment of inner product is done in a smooth way, and hence defines a Riemannian metric
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on M. To see that this metric is in fact a-invariant, observe that:

(dagu, dagv)y o) 0 = I(Pdayudago)
= J<R9¢u,v>

= j<¢u,v) = <u7 U>z'

As an application of this, suppose that there is a point x € Fix,(G). There is an induced
action dav © G x T, M — T,M of G on the inner product space (Tx]\/[,< , )‘1), given by
da(g,u) = dayu.

It turns out that da is what is known as an ‘orthogonal action’. Roughly speaking, this
means that if a basis B is chosen for T, M which is orthonormal with respect to ( , ),
then the matrices corresponding to the «, in this basis will be orthogonal matrices, i.e.
[dag)t, = [day]g* for all g € G. For our purposes, M = 52, so these tangent spaces are
two-dimensional, hence we can identify these induced actions da of G on T, M with linear
actions of G on R2.

Another notion we will employ is that of the exponential map. Let (, ) be a Riemannian
metric on a smooth manifold M. For every p € M, there is a map exp, : U — M for
some open neighborhood U of 0 € T,M. The Riemannian manifold (M, ( , )) is said to be
complete (or geodesically complete) if each of the maps exp, are defined for all u € T,M.
Since this paper is concerned exclusively about S? which is complete, we will only consider
complete manifolds here.

The map exp,, has several important properties. Firstly, exp, depends on the Riemannian
metric. When we have an action a and an a-invariant metric ( , }*, we will indicate the
dependence of the exponential map on this metric by writing exp;. For any fixed point
x € M, exp$ : (T,M,do) — (M, «) is G-equivariant, i.e. exp$(dayu) = ayexpl(u).

The exponential map exp, is a local diffeomorphism, but not a diffeomorphism for any

compact M because it will not be injective. Let B.(0) := {u e T,M | \/(u,u), < 5} be the

open ball of radius ¢ centered at 0 € T, M, and define the injectivity radius (at p) to be the
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number

R, = sup {5 >0 exp, ’B 0 18 injective} :

This value is important for making arguments about the topology of M, and we will use it
to prove Lemma [IT.

This concludes the preliminaries section.

3. CLASSIFICATION OF COMPACT SUBGROUPS OF O3 UP TO CONJUGACY

We give here a list of representatives for the elements of C.(O3). The conclusion of this

section is the following:

Theorem 9. The second column of Table 1 constitutes a system of distinct representatives

for C.(Os).

In other words, every compact Lie subgroup H < O3 belongs to the conjugacy class of

exactly one of the groups in Table 1.

Important Note: In the context of Theorem B, the reader should be thinking of H = Fy(G)
from Section [Z22.
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Ref. | Connected Preferred Image | Intersection | Orientation | Isomorphism classes

No. | components | representative | under p | with SO3 preserving? of stabilizers

(1) 1 SO3 SO3 SO3 Y St

(2) 2 O3 SOs3 SO3 N O2

(3) 1 St St St Y 1,8t

(4) 2 St x Zsy St St N 1,Zs, St

(5) 2 Oz 2 S % Zs O2 02 Y 1,Zs, 8!

(6) 2 02 = S x 7 02 st N 1,Zs,02

(7) 4 Oa X 7o 02 0s N 1,Zs,09

(8) k 7, Zn, 7, Yy 1,Z

(9) 45 7 Za; Za; N 1,Z;

(10) | 4j+2 Zazien) Zajio Zaji1 N 1,22, Zaj41

(11) 4n Zan X Za Zon, Zon, N 1,22, Z2n

(12) in+2 Zon+1 X Lo Zon+1 Zon+1 N 1, Zon+1

(13) 2k Dy, Dy, Dy, Y 1,Z2,Zy

(14) 2k Dy, Dy, Z N 1,Z2, Dy,

(15) 8] Da(ay) Da; Da; N 1,72, Dy;

(16) 85 + 4 Dagaj+1) Dajia Daji1 N 1,Zs, (Z2)?, Daj 11

(17) 8n Doy, X Zo Doy, Do, N 1,Z2,(Z2)?, Dap,

(18) 8n +4 Dony1 X Zo Dan+1 Dont1 N 1,Z2, Dant1

(19) 12 Tet = Ay Tet Tet Y 1,%2,7Z3

(20) 24 Tet X Zs Tet Tet N 1,%2,(Z2)%, 23

(21) 24 Oct = S, Oct Oct Y 1,Z2,73,Z4

(22) 24 Tetr 22 Sy Oct Tet N 1,72, (Z2)?, D3

(23) 48 Oct X Zo Oct Oct N 1,Z2,(Z2)?, D3, D4

(24) 60 Ico =2 As Ico Ico Y 1,%Z9,7Z3,75

(25) 120 Ico X Zo Ico Ico N 1,Z2,(Z2)?, D3, Ds
Table 1

After clarifying the notation of Table 1, we will prove Theorem B for the cases where H is

finite, and then finally for H a compact Lie subgroup of dim(H) > 1.

3.1. Description and Notation of the Preferred Representatives. This section is for

reference, and is long. Those readers primarily interested in theory are encouraged to skip

ahead to the proof.

(1)/(2) When [H] = [SO;] or [Os], these classes each contain only one element, so the

preferred representative is SOz or Oj itself.
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(3) When [H] = [S'], the preferred representative is the subgroup of rotations about the
z-axis.

(4) When [H] = [S! X Z,], the preferred representative is the subgroup generated by rotations
about the z-axis, together with the matrix —1I.

(5) When [H] = [Os], the preferred representative is the subgroup generated by rotations
about the z-axis, together with a rotation of 7 radians about the z-axis.

(6) When [H]| = [@], the preferred representative is the subgroup generated by rotations
about the z-axis, together with reflection across the yz-plane.

(7) When [H] = [O9xZs], the preferred representative is the subgroup generated by rotations

about the z-axis, together with a rotation of 7 radians about the x-axis, and with —1.

For the finite groups, we describe generators according to the following presentation

scheme:
(I) Cyclic (a | a"=1)
(II1) Dihedral {(a,b | d* == (ab)* =1)
(11I) Tetrahedral (a,b | a®=b"=(ab)* =1)
(IV) Octahedral (a,b | a* =0b" = (ab)* =1)
(V) Icosahedral (a,b | a®=b"=(ab)*=1).

For the cyclic and dihedral® cases Z;, and Dy, the generator a will correspond to rotation
through 2% radians about the z-axis, and the generator b will correspond to a rotation of
7w radians about the z-axis. The alternate embeddings ZQZ, lf);; and l/)\k as well as the
extensions Zy X Zg and Dy X Zs will reference these generators.

Note: The embellishment ~ indicates the presence of the generator —a. The marking ~

indicated the presence of —b (this is in keeping with its use in 6\2 above).

Note: As a general rule k will either be 2n or 2n+ 1, and if kK = 2n, then n will be either
2j or 25 + 1.

SHere the notation Dy, for the dihedral groups corresponds to a group of order 2k, whose underlying cyclic

group is Zj.
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(8) When [H] = [Z], the preferred representative is the subgroup generated by the matrix
a.

(9)/(10) When [H] = [Zs,], the preferred representative is the subgroup generated by the
matrix —a.

(11)/(12) When [H] = [Zy x Zs], the preferred representative is the subgroup generated by
the matrices @ and —I. Note that when k is odd, this group is cyclic and generated by
—a.

(13) When [H| = [Dg], the preferred representative is the subgroup generated by the matrices
a and b.

(14) When [H] = [l/)\k], the preferred representative is the subgroup generated by the matrices
a and —b.

(15)/(16) When [H] = [Da,] (n = 2j or 2j + 1), the preferred representative is the subgroup
generated by the matrices —a and b.

(15)/(16) [H] = [Z/)szn], This is a special case that will occur in the proof of Theorem H, and
will turn out to be redundant: In this case, the preferred representative is the subgroup
generated by the matrices —a and —b.

(17)/(18) When [H] = [Dy x Zs], the preferred representative is the subgroup generated by
the matrices a, b and —1.

(19) When [H] = [Tet] (The rotational symmetry group of the tetrahedron), the preferred

representative is the subgroup generated by the matrices:

0 -1 0 0 0 1
a= 10 0 —-1|, & b= 110 0
1 0 O 01 0

(20) When [H] = [Tet x Zs], the preferred representative is the subgroup generated by —I

and the generators of Tet as above.
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(21)

(22)

(24)

(25)

When [H] = [Oct] (the rotational group of the octahedron), the preferred representative

is the subgroup generated by the matrices:

10 0 0 01
a= 100 —-1|, & b= 1100
01 0 010

When [H| = [Tetp], the preferred representative is the subgroup generated by the ma-
trices —a and b, where a, b correspond to the generators of Oct listed above.

For the construction of the equivariant CW decomposition for this group, it will be
in our best interest to realize this as the full symmetry group of the tetrahedron. define
A = b%a® and B = b, and C = —a®b?a. Direct calculation shows that A and B are
precisely the generators for Tet, and C provides the extra reflection across an edge.
When [H] = [Oct X Zy| (the full symmetry group of the octahedron), the preferred
representative is the subgroup generated by the matrices a and b of Oct from above,
together with —1.

When [H] = [Ico] (the rotation group of the icosahedron), the preferred representative

is the subgroup generated by:

~1 0 0 —ot —p 1
s=10 10|, & b=35| ¢ -1 —¢p!
0 0 1 1 ot

1+V5

> is the golden ratio. If we set a = sb, then {a,b} can also serve as a

where ¢ =
generating set for Ico, and this is in keeping with our presentation conventions from Page
20

When [H] = [lco X Zs| (the full symmetry group of the icosahedron), the preferred

representative is the subgroup generated by the matrices a and b of Ico above, together

with —1.

3.2. Classification of Finite Subgroups up to Conjugacy. Below we flesh out the

details of Theorem @ for finite H < O3. We rely primarily on the four facts from Section 2.
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Let |H| < oo, and let p : O3 — SO5 denote projection of Section 4. The image
p(H) < SOj is finite, so it must be in exactly one of the 5 conjugacy classes listed in Corollary
[. The 5 conjugacy classes correspond to finite subgroups which have the presentations listed
on page E1.

Since these presentations are valid for every group in a given [p(H)] (the actual a and

b vary from class to class), we can endow p(H) with such a presentation®

. The group H
surjects onto p(H ), and as such must contain elements that map onto the generators a and
b of p(H). We argue by cases:

Case I: p(H) = {a | d*F =1)

We show that [H] must be exactly one of reference numbers (8)-(12). Either —I € H or
—1 ¢ H. If —I € H, then Fact 4 applies and H = Zj X Zy (reference numbers (11) and
(12)). Note that this includes the possibility of the trivial group 1 = Z;, where the preferred
representative 1 x Zs acts by central involution.

Assume now that —I ¢ H. Since H surjects onto p(H ), it must contain a or —a. If a € H,
then —a’ ¢ H for any i for otherwise this would imply —I € Z. Thus a € H and —1 ¢ H
implies that H < SOj3, so H = p(H) = Zj, (class number (8)).

If —a € H and —I ¢ H, then k must be even. To see this, notice that if k¥ = 2n + 1, then
(—a)* = —aF = —I. Assume then that k = 2n. Since —a satisfies the same relations as a,
i.e. (—a)® =1, it must generate a cyclic group of order k. The representative for this class
is Zg,, (reference numbers (9) and (10)).

To see that these conjugacy classes are all distinct, notice that Z,, ., has odd order, and
so cannot be conjugate to any of the other possibilities found here in case (I). By Fact 3,
Zs, cannot be conjugate to Zan, ¢ SO5 nor Z, x Zy ¢ SO3, because Zy, < SOj. Finally
[D(Zign)] = [Zan] # [Zon] = [p(Zn % Zs)], s0 by Fact 1 [Zagy,] # [Zn X Zo)-

Case II: p(H) = {a,b | a*F =b* = (ab)* =1)

We show that [H] must be exactly one of reference numbers (13)-(18). H may or may not

contain —I, must contain a or —a or both, and must contain b or —b or both. If —I € H,

6There is no harm in reading this section as though p(H) is in fact the preferred representative of [p(H)]

and it is recommended that the reader consider this situation if something becomes difficult to visualize.
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then a,b,—I € H and |H| = 4k. By Fact 4, the preferred representative in this case is
Dy X Zs for k = 2n or = 2n + 1 (reference numbers (17) and (18)). As with the cyclic case,
if k =2n+1, then —a € H implies —I € H, so a,b,—1 € H, and no new cases are obtained.

If -1 ¢ H, and —a € H then k must be even, say k = 2n. From here there are two
possibilities: —b € H or —b ¢ H. If —b ¢ H then H = ((—a),b), and these generators
satisfy all the same relations as a and b, so H is dihedral. The preferred representative for
this class is Doy, (reference numbers (15) and (16)). If —b € H then H = ((—a), (—b)), and
these generators satisfy all the same relations as a and b, so H is dihedral. The preferred
representative for this class is /B\; (this will turn out to be the same as reference numbers
(15) and (16)).

If —-I,—a ¢ H, but —b € H, then H = (a,(—0b)) and H is dihedral as we have seen before.
The preferred representative in this case is D, (class number (14)). Finally, if none of
—1,—a,—barein H, then H = p(H) (class number (13)). This exhausts all the possibilities
when p(H) = Dy

Now we must show that these conjugacy classes are all distinct. The only classes of singly-
even (2(2n+ 1)) order groups are [Da, 1] (number (13) for n odd) and [D/%;] (number (14)
for n odd). Dy, < SOz and 172; ¢ SOj3, so these must represent distinct conjugacy
classes by Fact 3.

Of the classes whose groups are doubly-even (=0 mod 4), Da,11 X Zs is the only group
that projects onto a group of singly-even order: p(Day,11 X Zsg) = Dayy1, S0 it (class number
(18)) must be distinct from the rest.

Of the classes that remain, [Ds,] (number (13), n even) is the only class whose groups are
contained in SOs, so it must be distinct from the rest.

Of the classes that remain, [Ds, X Zs] is the only class whose groups contain —1, so by
Fact 2 it (class number (17)) must be distinct from the rest.

The only remaining classes are [13\2;], [Dgzn] and [Z/);L] We will show that [5;] is a distinct

class, but [Dy,] = [Dan).
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Denote the intersection of SO3 with the preferred representatives of these last three classes

by }/[\0, ﬁ; and ﬁo respectively. The generators for these groups are

—~

Hoy = (a) = Zay,
Hy = (a2, ab) = D,

Hy = {a®,b) = D,,.

For l/);, the generator —b has been left out by intersecting with SOs, and this makes E)
cyclic, so by Fact 3 it (class number (14), even) must be in a distinct conjugacy class from
the remaining two.

To see that [Z?/\;] = [Dy,)], create a square root a'? of the generator® a as in Section
P4. First observe the geometric fact that a="2(b)a~"? = b. We remark that this cannot be

proven algebraically in terms of generators, and relies entirely on the construction of a'/* as

an element of SO3. Next observe that a'/?(—a)a™"* = —a, and
al/r"(b)oz_l/2 —aa""?ba"* = ab.

Now we calculate:

= [Dy]

"The generator a is the same for both preferred representatives of these two classes.
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—

Thus we see that both Dy, and Ds, belong to class number (15) when n is even, or (16)
when n is odd, and this concludes the section on the dihedral classes of C.(O3).

Case III: p(H) = {(a,b | a®> =0 = (ab)* = 1)

We show that [H] must be either class number (19) or (20). In this case, H must contain
a or —a or both, and b or —b or both. If H contains either —a or —b, then it must contain
—1I, and hence H = (a, b, —I) = Tet X Zy (class number (20)). If H contains neither —a, nor
—b, then —I ¢ H and H = Tet itself (class number (19)).

The groups have different orders, so they must represent distinct conjugacy classes.

Case IV: p(H) = {(a,b | a*=1® = (ab)? = 1)

We show that [H] must be class number (21), (22) or (23). If H contains —b, then —I € H
and H = Oct X Zy (class number (23)). If H contains neither —a, nor —b, then —I ¢ H
and H = Oct itself (class number (21)). If H doesn’t contain —b, but does contain —a, then
(—a) and b satisfy the same relations as a and b, and hence generate a subgroup isomorphic
to Oct = Sy (class number (22)). The preferred representative for this last group is Tetp.

The group Oct X Zs clearly lies in a distinct class from the other two groups, because
its order is twice that of the other two. The remaining classes must be distinct by Fact 3,
because Oct < SO3, and Tetp ¢ SO;.

We remark that this alternate, orientation reversing embedding of Oct is referred to as
Tetr because it represents the full symmetry group of a tetrahedron. To visualize this,
consider the tetrahedron inscribed inside the cube below, and remember that the cube and

the octahedron have the same symmetry group by duality.
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Case V: p(h) = (a,b | a® =03 = (ab)? = 1)

If H contains either —a or —b, then —/ € H and H = Ico x Z, (class number (25)).
Otherwise —/ ¢ H and H = Ico (class number (24)).

The classes are necessarily distinct, because their representatives have different orders.

This concludes the proof of Theorem 8 for the case of finite H.

3.3. Classification of Compact Lie Subgroups of Positive Dimension up to Con-
jugacy. Let H < O3 be a compact Lie subgroup of dim(H) > 1. By Proposition B, p(H) is
conjugate to one of St, Oy or SO3;. We handle each of these cases separately:

Case I: [p(H)] = [SO;]

In this case H is clearly either O3 or SO3, and these types have unique, distinct conjugacy
classes (1) and (2).

Case II: [p(H)] = [9]

We show that [H| must be either class number (3) or (4). Let Hp be the connected
component of the identity in H. H, is a compact, connected one-dimensional manifold,

and as such diffeomorphic to S'. Since SOs is connected, Hy < SOs. This implies that
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p(Hy) = Hp, and we find:

If H < SOs, then all three of H, Hy and p(H) groups are the same copy of S!, so H is
conjugate the preferred representative of S' (class number (3)).

If H ¢ SOj3, then there is some g € H \ SO3. Then p(g) € H, and

97'p(g) = g~ (det(9)g) = —1 € H.

By Fact 4, H = S x Zy. Any group in this class is completely determined by it’s axis of
rotation, and conjugacy is realized by rotations from one axis to the other.

Case III: [p(H)] = (O]

We show that [H]| must be class number (5), (6) or (7). From our analysis in Section
24, p(H) has a subgroup isomorphic to S*, and an element b of order two that swaps the
poles where the axis of rotation intersects S?. As we have seen in the previous case (II:
[p(h)] = [S']), the connected component of the identity Hy is diffeomorphic to S'. We
distinguish three cases.

Either —I € H or not. If —I € H, then Fact 4 applies and H = Oy X Z, (class number
(7).

Suppose then that —I ¢ H. H must contain either b or —b but cannot contain both,
because (—b)b = —1. If b € H, then H C SOs, so [H] = [Os] (class number (5)). If —b € H,
then every element of H preserves the poles of rotation, and the preferred representative in
this case is O (class number (6)).

The group O X Zs has four connected components, and as such cannot be conjugate to
the other two. Using Fact 3, Oy < SO5 and fO\; % SO5 cannot be conjugate to one another.

This concludes the proof of Theorem 8 for the case of dim(H) > 1.
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4. CONSTRUCTION OF EQUIVARIANT SKELETA FOR THE FINITE SUBGROUPS

Below we list the equivariant decomposition of S? corresponding to the preferred rep-
resentatives of each conjugacy class in C.(O3). The decompositions corresponding to the
cyclic and dihedral cases require repeated reference to specific subsets of S2, so we begin by

outlining some notational conventions.

4.1. Preliminaries for Cyclic and Dihedral Cases. Here we make heavy use of the
explicit generators a and b of the preferred representatives of the cyclic and dihedral classes
(8)-(18) as described in Section Bl. The North pole N and the South pole S will always
be in the 0-skeleton. They will be in the same orbit whenever H contains —1,0 or —a. The
point p on the equator will usually be (1,0,0), but for all groups with a ~ decoration p will
be (0,1,0). This alternate choice is necessary for the reflective dihedral cases only, and we
will indicate when this is the case.

As a shorthand for referring to certain cells that appear frequently, define the following:

e M, will be the meridional arc connecting N to S, passing through a”-p, and M := M,.

M.+ will be the meridional arc connecting N to a” - p, and M+ := M.

E, will be the equatorial arc connecting p to a” - p, and F := Ej.

T, will be the triangular cell spanned by N, p and a” - p, and T := T; (having positive

orientation).

B, will be the bigon spanned by M and a" - M, and B := B; (having positive

orientation).

4.2. Cyclic Cases and Their Extensions. H = Z,:

For the orientation preserving cyclic cases (even or odd order), we have:

(0) -cells:

Orby (N) = (H/H> x D"

() <

I

Orb, ()
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(1) -cell:
Orby (M) = (H/1> x D!

(2) -cell:
Orby(B) = (H/1) x D?

H = Zoy:

For this group, there are different decompositions depending on whether n is even or odd.
This phenomenon comes from the fact that a™ is rotation by 7 radians, so —a™ corresponds
to reflection across the zy-plane. When n is odd, —a™ € 22;, but when n is even, —a" ¢ 2;;

For n even, we have

(0) -cells:
Orb, (N) = (H/<a2>) x D"
Orby (p) = (H/1> x DY
(1) -cells:
Orby (M*) = (H/1> % D!
Orby (E) = (H/1> x D!
(2) -cells:

Orby (Th) = (H/1> x D?

For n odd, we have

(0) -cells:

Orb (N) = (H/<a2>) % D"

Orba (p) & (H/1> x D
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(1) -cells:
Orby (M*) & (H/1> x D!
Orby (By) & (H/<_an>) % D!
(2) —cell
Orb (Ty) = (H/1) « D!
H = Ty % Zo:

For this group, we have:

(0) cells:
Orby (N) = (H/<a>> x D"
Orba(p) = (B _ymy) x D°
(1) cells:
Orby (M%) = (H/1) x D!
Orba(E) = (/) x D!
(2) -cells:
Orb, (T) = (H/<1>) x D?
H = Ty % To:

For this case, we have:

(0) -cells:
Orby (N) = (H/<a>> x D
(1) -cells:

OI"bA(M)

2

(1) x>
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(2) -cells:

Orby (Bij,) (H/l) x D?

ZgXZQ

Full skeleton Cells in the orbit space

4.3. Dihedral Cases and Their Extensions.

H=0D,:

For the orientation preserving dihedral cases D,,, we have

(0) ~cells:
Orb, (N) = (H/<a>) % D°
Orby(p) = (A4 ) x D°
Orba(a® - p) = (/) x D°
(1) ~cells:
Orby (M*) = (H/1> x D!
Orby (B ) & (H/1) x D!
(2) ~cells:
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—

H=D,:

For these groups, choose p = (0,1,0). Then we have:

(0) ~cells:
Orba(N) = (Hrg) < 1f
Orba(S) = (H/H) x D"
(1) -cells:
Orby(M) = (/) x D!

Orba (M) = (1L _ ) < D!
(2) -cells:
Orba(Bi) = (14) x D?

Just as with the Z,, case, the orientation reversing dihedral cases corresponding to the
generator —a, will differ depending on whether n is even or odd.
H = D,, (n even):

For n even, we have:

(0) -cells:
Orby (N) = (H/<a2’ _ab>) x D
o) (V1)
(1) -cells:
Orby (M*) = (H/1> x D!
Orba(Mip) = (/) ringy ) x D!
(2) -cells:

12

Orby (B1),) (H/l) x D?
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H = D,, (n odd):

For n odd, we have: we have:

(0) -cells:
Orba(N) = (/2 ) x D°
Orby(p) = (H/<—an,b>> x D°
Orba(a-p) = (B 2y ) x D'
(1) -cells:
Orba(M+) 2 (H/_ ) x D!
Orba(M;F) = (H/_ oy ) x D!
Orby (E) = (H/<_an>) « D
(2) -cells:
Orba(T) = (H4) x D2
H = Doy, x Zo:
(0) -cells:
Orba(N) = (P, ) x D"
Orba(p) = (2o 1y) x D°
Orba(a*-p) 2= (B oy ) % D°
(1) -cells:

Orba(M+) 2 (H/_ ) x D!
Orba(Mi) 2 () jnaryy ) x D!

Orby (Eij) = ( /<_an>) x D!
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(2) -cells:
Orby (Th,) = (H/l) x D?

H = Dapy1 X Zs:

(0) -cells:
Orba(N) = (R, ) x D
Orba(p) = (A4 ) x D°
(1) -cells:
Orby (M*) = (H/l) x D!
Orba(Myy) 2 (/) naryy ) x D!
(2) -cells:

Orby (Bi),) = ( /1) x D?

4.4. Polyhedral Cases. Duality arguments show that the 5 platonic solids give rise to 3
symmetry groups: icosahedral/dodecahedral, cubic/octahedral, and tetrahedral (the tetra-
hedron is self-dual). By inscribing a platonic solid in S?, we can use projection from the
origin to map the surface of the solid homeomorphically onto S?. This allows S? to naturally
inherit the structure of a H-CW complex. If H is one of the three polyhedral groups, then
by choosing the icosahedron, octahedron, and tetrahedron, the corresponding CW complex
can be assumed to have triangular 2-cells. It should be noted that this is not the cell de-
composition we will use, but it is the starting point from which we construct our desired

decomposition.

H is any of the orientation preserving polyhedral groups. For these cases, we take the
first barycentric subdivision of each triangular face. Then combine two adjacent triangles if
they come from the same original triangle and both contain a common vertex of the original

triangle in their boundaries. This will result in a decomposition of each face into three
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congruent quadrilateral faces. Using the generators a and b described in Section BT, label

the vertices v,, v, and v, according to the following condition:
Staba(v,) = (a),  Staby(vy) = (b) & Staby(ve) = (ab)

Since a, b and ab € SO3, they are each a rotation. Thus they each have exactly two fixed
points in S2, and in the surface of the inscribed polyhedron. In order to determine v,, v,
explicitly, choose them according to the right-hand rule with both a and b corresponding
to counter-clockwise rotations about v, and v, resp. There is exactly one triangle of the
barycentric subdivision which contains v, and v, and has as its other vertex v,, and this is
how v, is determined.

There are two triangles in the barycentric subdivision that share both v, and v, as common
vertices. These two triangles join together to form a quadrilateral which we denote by Q.
Let J,0 be the line segment connecting vy, to vp, and Jy, o be the line segment connecting v,
to vgp. Finally let Q, J,u, Jp, Uq, Uy and w;, be the projections of Qo, Ju0, Jb,0, Va, Vap and vy
respectively onto the sphere.

The H-CW decompositions are as follows:

H = Tet or Oct or Ico:

(0) -cells:
Orbp (uy) = <H/<a>> x DO
Orba () = (1) % D°
OrbA(ub) = (H/<b>> x DY
(1) -cells:
Orba(J,) = (H/l) x D!
Orba (J;) = (H/> x D!
(2) -cells:
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FIGURE 2

Tet X Zo Orientation preserving Orientation reversing

H is any of the orientation reversing polyhedral groups except for Tet x Z,: Here
we take the first barycentric subdivision of each triangular face. Then determine the points
Vg, Ugp and vy, as before, but do not combine the triangles. Define J,, Jyo as before, and
also define J,; 0 to be the line segment connecting v, to v,. Now project vg, Vap, U, Ja0, Jabo
and J, o onto the sphere to form u,, Uup, s, Ju, Jup and Jy, respectively. The three arcs J;
bound a spherical triangle that will be denoted A, and this will be our fundamental domain

for the action.

H = Oct x ZQ:
(0) -cells:
oo = (V) <
Orba (uap) = <H/<ab, a262a>> x D"
Orba (up) = <H/<b, ba2b2a>> x D
(1) -cells:
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(2) -cells:
Orby(A) = (H/1> x D?

For the case of the full symmetry group of the tetrahedron, we apply the above construction
to the faces of the tetrahedron, and use the generators A and B to determine the cells w4,
uag, ug, Ja, Jap, Jg and A. Together, A and B generate Tet, so we must also include the
third generator C' from Section BTl. Note that {I, AC,CB, AB} is isomorphic to the Klein

four group. The resultant equivariant cells are then:

H = Tet:
(0) ~cells:
Orby (u4) = ( o c>) x D"
Orba(uan) = (1 40 oy ) x D
Orby (up) = ( /<B,C>> x D"
(1) -cells:
Orba(Ja) = (M 4c) x D'
Orby(Jap) = ( /<(]>> x D'
Orby(J5) = (H/<CB>> x D!
(2) -cells:
Orby(A) = (H/1) x D?
H =1Ico x Zy:
(0) -cells:
Orba(ua) = (B _papaziza?)) * 0"
Orba(uas) 2 (H/(0p, _papzatizar)) < D'
Orba(us) = (B4, _ppqpeazizaz)) x D"



39 S. C. Sanford 84.4

(1) -cells®
Orby(Ja) = (H/<—bab2a2b2a2>) x D'
Orba (Jab) = (H/<_z92ab?a2b2a2>) x D'
Orba() = (B _gpapzazizay) * D'
(2) ~cells:

Orb(A) = (H/l) x D?

H = Tet x Zy: ®

For this case, we begin by dividing up each 2-simplex into 6 smaller 2-simplices. Start by
connecting the barycenter of each triangular face to the centers of each of its edges using
three straight line segments. Then connect the centers of each of the original edges to one
another using straight line segments. The reader may notice at this point that the triangles
in this decomposition are not all of the same size, and so cannot be contained in a single
orbit under any H < Os. Fortunately when the tetrahedron is inscribed inside S?, each of
these triangles has the same solid angle, so upon projection onto the sphere, these result in
spherical triangles that all have the same area.

Using the generators a and b from Section B, we aim to single out a specific spherical
triangle as our fundamental domain. The element a € SOj; is a rotation of order three, and
must have two poles {#u} C S? in it’s 1-eigenspace. The element ab’a = a*ba® = ba®b =
b2ab?® € Tet < SO3 has order two, so it must correspond to a rotation of 7 radians about some
axis £. This shows that the element —ab*a € Tet x Z; corresponds to reflection across the
plane ¢*. Evidently there are precisely two spherical triangles that have a vertex u, € {+u}
whose opposite arc J, is fixed by the element —ab?a. Choose one of these spherical triangles

and label it A, then the triangle not chosen will be —1 - A’.

81 am particularly grateful to Daniel Flores for helping me determine these stabilizers.

9The reason this case is set apart from the others is essentially coming from the fact that the tetrahedron
is self-dual. This causes —I to send centers of faces to vertices and wvice versa, an effect that does not occur

in any of the other cases.
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FIGURE 4. A fundamental domain for Tet x Z,

Of the other vertices of A’, one of them is stabilized by both ab and —ba, and hence by
K := (ab, —ba) which is isomorphic to the Klein four group. Label this vertex uy, and label

the arc connecting u, to ux as Jx. With all of this notation, the H-CW decomposition is:

H = Tet x Zy:
(0) ~cells:
Orba (ug) = (H/<a>) x D"
Orba(uie) = (H/ 0, _pay) % D
(1) -cells:
Orba(da) = (B oy ) % D!
Orby (i) = ( /<1>> x D!
(2) -cells:

Orby (A') & (H/1> x D?

We comment here that the one-skeleton of quotient space can be taken to be contractible in
the cases where the action is orientation preserving. This is useful in classifying G-equivariant

vector bundles over the two sphere and in determining whether or not such bundles have
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algebraic models, for more on this see [16]. An approach for this line of reasoning relies
on techniques developed by Hambleton and Hausmann in [6] and [7]. Unfortunately, the
one-skeleton of the quotient space will not be contractible in the case of the orientation
reversing actions. Although these remarks do not affect the proof of Theorem B, these types

of questions served as a primary motivation to determine the validity of Theorem D.

5. PROOF OF THEOREM P

Let o : G x S? — S? be a smooth action, and let f : S? — S? be the conjugating function
provided by Theorem [. Define H := Fy(G) < Os as in Section Z2. By our observations in
Section 71, we may assume that H is the preferred representative of [H]| € C.(O3), and that
the resulting action A of G on S? corresponds (via composition with Fy) to the standard
action A of H on S%. We index the cases of the proof by the possible preferred representatives
H. Some of these cases have proofs that are identical, and so the representatives are grouped

by the properties (such as transitivity of A) of H that allow for certain arguments.

5.1. Proof of Theorem 2 if H = O3 or SOs.
In these cases, A and hence o and A are transitive actions, and this implies that f was
smooth to begin with. To see this, let p € S%. If ¢ € S?, then by transitivity there is some

g € G such that ¢ = ayp. By the equivariance of f, we have that

f(@) = flagp) = N\ f(p)

This shows that f is completely determined by the value f(p) and the linear action . Let
K := Stab,(p) be the stabilizer of p under o. Conjugating by f shows that this is equal
to the stabilizer of f(p) under A. By the Smooth Orbit/Stabilizer Theorem, we obtain

diffeomorphisms

0, O — 52 I Lk

gK — agp 9K — A\ f(p).
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Thus f can be written as the composition

g2 el G By g

agp — gK = X\ f(p),

and this establishes the cases where H acts transitively. In terms of conjugacy classes, this

proves both the H = O(3) and H = SO(3) cases.

5.2. Proof of Theorem 2 if H = S! or 6\2
These cases are grouped together because they have two points, the north Ny = (0,0,1)
and south Sy = (0,0, —1) poles, that are fixed under the action A by every element of G.
Let po = (1,0,0), and let v : [0,1] — S? be a unit speed parameterization of the unique
meridian which passes through py and connects the north pole Ny to the south pole Sj.
Define p := f~'(py), N := f~1(No) and S := f~(Sy), so that N, S are the unique isolated
fixed points of the action a.

Using the exponential map exp%, we can map a closed disk Dy centered at 0 € Ty S?

diffeomorphically onto a closed neighborhood of N.
Lemma 10. The radius v of Dy = B,(0) can be increased until p € exp%(0Dx).

Proof. Let R := Ry be the injectivity radius of exp%;. Since exp%; is injective on Br(0), but

not on Bg(0), there exist u,v € dB(0) with u # v and exp% (u) = exp%(v) =: 2o € S.
The induced action da of ST < G on TyS? is orthogonal with respect to the metric {, )*

by construction, so two vectors in Ty.S? are in the same orbit under do if and only if they

have the same norm with respect to (, )*. Since (u,u)* = (v,v)* = R?, there must be some

g € S* such that dayu = v. Note that u # v implies that g # 1 € S'. Using the equivariance
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of the exponential function, we find that
gy = oy expyy(u)
= exply (doyu)
—expi(0) = 2o
_
xg €Fix,(g) = {N,S}
By the continuity of exp% and the definition of R, zy cannot be N, and therefore zy = S.
For any w € OBg(0), there is a unique h € S* such that daju = w. This shows that
expi (w) = exply (daju)
= ay, expyy (u)
=apS = S.
Therefore expQ maps the entire boundary dBg(0) onto S.
The image of exp%; is the quotient of a disk where the boundary is collapsed to a point,

and this is topologically a sphere. Taking this quotient followed by set inclusion, we find

that on the closed disk, exp$%; can be factored as:

Ba(0) — im(expy) = PrO0pp = g2 g2

Any injective map from S? to itself must also be surjective, so p € exp%(Bg(0)). Now let
u € Bgr(0) be such that exp%(u) = p. If we set r = |Jul|, then p = expQ (u) € exp%(9B,(0)) =
exp%(0Dy)

0

We now continue with the proof of Theorem 2 when H = S or 6\2 Note that expQ (0Dy) =
Jdexpy(Dy) is precisely the orbit of f(p) under a. We perform a similar construction for S,
and find that expg(Dg) and exp% (Dy) meet up precisely at the orbit of p. The composition
E, = expfy o (expg)fl : 0Dg — 0Dy is an equivariant, orientation reversing diffeomorphism

of their boundaries.
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Now we are ready to define f, the smooth replacement for f. Let ny : [0,1] — S? be the
straight line segment connecting 0 to (exp%) ™" (p) € dDy. Define the curve By := exp% ony.
Define Bs : [0,1] — S? similarly, except so that it goes in the opposite direction (from p to

S). Finally let 8 be the concatenation of Sy and (s in S?. Define

and extend by G-equivariance to all of S? by requiring

flag(B(1)) = Ag(7(2))

Let D= be the closed upper (resp. lower) hemisphere of S?. Let Dy, = (expy,) (DY)
and similarly for Dg,. For any point outside of Orb,(p), say in the northern hemisphere, the

map f factors as

f(g) := expy of o (exp) " (q)

for some orientation preserving, equivariant identification f of Dy with the disk Dy, and
similarly for the southern hemisphere. Thus the only place where non-differentiability could
occur is at the equator.

Fortunately this is not a major issue. Gauss’s Lemma (in Riemannian geometry, see [4,
Lemma 3.5, p.69]) implies that Sy and Sg meet Orb,(p) orthogonally (as determined by the
inner product ( , )*), and this implies that 5 is a smooth arc, possibly after reparameteriza-
tion™.

Away from the poles, the action « is free. Let S? := 5%\ {N,S}. The Slice Theorem (see

[[5, Thm 5.7, p.40]) supplies a smooth map
2
o 82 =952 (0,1)

from the (twice-punctured) sphere to the quotient space under «, which we identify with

(0,1). By composing with a diffeomorphism of (0, 1), it is clear that we have many options

10r¢ may be necessary to reparameterize to ensure that the magnitude of the velocity is C!
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for this identification. Since  is a smooth arc, we may choose an identification that satisfies:

T, (B@1) =t

If we take the product of this map ¥, with the map ®, supplied by the Smooth Or-

bit /Stabilizer Theorem, this produces a cylindrical coordinate chart on S2:
D, x U, : 87— S x(0,1)

Let ¢ : S' < G be the inclusion of the circle subgroup into G. For all z € S2, the chart

map above satisfies

a(to®y(z),foV,(z)) =x.

A sybolic shuffling of our notations easily reveals that a factorization of  when restricted to

S2? is given by
f=MAo (Lo@a) X (fyo\Ifa)

This shows that f is also differentiable at the equator, and is thus differentiable everywhere

on S2.

5.3. Proof of Theorem 2 if H = S' x Z,, or O(2), or O(2) X Zs.
For these conjugacy classes, the construction is similar to that of case b2, except that once
we have specified Sy, f is already completely determined.

It is worth mentioning that Gauss’s Lemma is necessary once again to ensure that f is

smooth in neighborhoods of Orb,,(p).

5.4. Proof of Theorem 2 if H is a finite subgroup of SO(3).
If H is finite, then let Y; be the H-equivariant i-skeleton of S? as described in Section B.
Using this, we will define f through a three-step process:
(i) Define fy to agree with the restriction of f to Xy := f~1(Y}), and extend this to disk
neighborhoods of the vertices of X using the exponential map.
(ii) Use f~!(Y1) to construct a ‘suitably smooth’ 1-skeleton X, and extend f, to f; by

requiring it to take an equivariant tubular neighborhood of X; to that of Y;.
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(iii) Extend f; to the remaining fundamental domain, and extend to all of S? by equivariance

to define f.

To begin, notice that H-CW decomposition of S? with respect to the standard action A
is a G-CW decomposition with respect to the action A. Define Xy := f~1(Yy). Let the set
Py :={yc}cep, consist of the representative points listed in Section @ (such as N, p, u, etc.)

whose orbits define the equivariant 0-cells, and let zc = f~!(yc) for each yo € P;. Define

Uy := | exp2(B,(0)), and

z€Xo

Vi o= | e (B:(0)),

yeYo

then choose an € > 0 such that U; and Vj are disjoint unions of disks.

Next, let the set {[;}/; =: P| (m < 2) be an enumeration of the representative arcs from
Section B whose orbits determine the equivariant 1-cells (e.g. M, Ei, M172 etc.). Define o;
and 7; to be the source and terminus of the arc f~1(l;). Careful inspection of the I; for any
orientation preserving group shows that it is possible to reorder the arcs so that 7, = 0,14
for each ¢ < m. In other words it is possible to create a path from oy to 7, by concatenating
the representative arcs [;.

Let X' and o' be the restrictions of the actions A and « respectively to the subgroup

K := Staby(yc) = Stab,(z¢). Let
Lot (T,o8% dof) — (TS, dN)

be any equivariant, linear isometry of the tangent spaces that preserves orientation if deg(f) =
1 and reverses orientation if deg(f) = —1. These exist by Theorem B. Finally, complete the

first step by defining:

N A a \—1 /
fo := exp;,, o Lo o (expj,.) }exp%C(BE/Q(O)) for every yo € F,

and extending this by equivariance to all of Ug/ 2,
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Our current goal is to replace each continuous arc f~1(I;) with a suitable smooth arc e;.

Choose some ¢ > 0 small enough that

Bs(fH (1)) N Bs(f7H (1) S Us, i#7
Let e; be a smooth arc that:
(i) agrees with ;' (1) on US/?,
(ii) is contained in U§ U Bs(f~*(l1)), and
(iii) is transverse to every exp$ (05,(0)) and expg (0B,(0)) for 52 <r <e.

These conditions merit some explanation. The first condition is forced upon us by the fact
that we have already defined f, and we desire f(e;) = [; for some extension §f. The second
condition guarantees that e; connects oy to 7; in the same way that f~1(l;) does, so that our
resultant 1-skeleton will have the same combinatorial structure as Y;. The third condition
guarantees that e; N ay(er) = () whenever g € G is non-trivial. All of these conditions can
be guaranteed by combining techniques of elementary approximation theory. If G is cyclic,
this is the only arc that we must replace, otherwise we must repeat this process once more:

Let e, be a smooth arc that:
(i) agrees with §;'(Iy) on US"?,

(ii) is contained in (UD U Bs(f(1I ))) \ <U ayg el)>

(iii) is transverse to every exp$, (0B,(0)) and exp$ (0B,(0)) for ¢2 <r < e.

The alternate set in condition (ii) is clearly necessary, as our arcs should only intersect at
their endpoints. Let © be the set mentioned in condition (ii). In order to know that such
an ey can be constructed, it will suffice to show that f;*(l5) lies in the same component of ©
as [ (l2) Nexp2,(0B.(0)). If they weren’t in the same component, then this would imply
that det(L¢o) = — deg(f) which contradicts the construction of L¢, so such an ey exists.
We can now freely define fi(e;) = l;. By the Slice Theorem, it is possible to construct
a-equivariant™ tubular neighborhoods U(e;) € S? of the e; which we may assume to be

disjoint outside of Ug/ ?. Similarly there are A-equivariant tubular neighborhoods V/(I;) of

HThe astute reader will notice that the stabilizers of every 1-cell in each of the orientation preserving

groups are all trivial. This means that the full power of the Slice Theorem is not necessary here, because
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each ;. If we set

Uy :=UpU U U a, (U(e;)) and

i=1geG

m::%u@UA(V(zm,

i=1geG

then we can extend f; to an equivariant map f; : U, — V.
What remains is to extend the map to our fundamental domain. Let Dy be any connected
component of S?\ U;. There is only one component of 5%\ V; that intersects f(D). Let this

region be called Dy. So far we have constructed a diffeomorphism f, |, : 0Dy — 9Dy, and

o
we would like to extend this map to a diffeomorphism of Dy to Dy .

Since the disk is null-homotopic, we can clearly extend f;|, to a map Dy — Dy . This

o
map can be made to be a homeomorphism. There is a well defined obstruction theory
for smoothing homeomorphisms of D" that are diffeomorphisms on S"~!, that was initially
defined by Munkres in [I1]. In an earlier paper [10] Munkres also showed that the groups in
which such obstructions lie are trivial for dimensions < 3. Thus we are able to extend f; to
a diffeomorphism of Dy onto Dy, .

Finally we extend this by equivariance to a diffeomorphism of f : S — S?, which will be

equivariant by construction.
5.5. Proof of Theorem 2 if H < Os is a finite subgroup ¢ SOs.

In this case, G may or may not contain (possibly multiple) copies of Z, as a reflection.
This implies that the fixed point sets of each reflection is a smoothly embedded copy of S!.
If there are no elements in G that correspond to a reflection across a plane, then the above
procedure can be carried out just as before. If there are elements such as this, then the

construction above can be carried out with a few caveats.

there is no group action. However this general construction will be important for when the actions do not

preserve orientation.
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The embedded S's are a necessary part of the 1-skeleton, and cannot be altered. This is
actually convenient, because it means that instead of replacing each f~!(l;) with e;, we can
simply use the f~!(l;) because they are already smooth arcs.

The proof in these cases relies on the full power of the Slice Theorem, which was not strictly
necessary for the orientation preserving case. This is because now edges are allowed to have
nontrivial stabilizers (reflections across themselves), and so the tubular neighborhoods must
be equivariant.

This exhausts all possibilities for [H] € C.(O3) and hence concludes the proof of Theorem

2 in its entirety.

6. PROOF OF COROLLARY

In this section we drop the assumption of effectiveness, and address this possibility specif-
ically. Following Palais 2], let D := Diff(5?) be the group of diffeomorphisms of S? under
composition, and let A := A(SOs,S?) be the space of continuous homomorphisms from
S0O3 — D, where both are topologized with the compact-open topology. As in Section P,
this space can be naturally identified with the space of smooth actions of SOz on S?. Since
SOs is simple and compact, any homomorphism in A is either trivial or an embedding™.
We only wish to consider effective actions, so let € :={a € A | kera = 0}.

There is an action T : D x A — A that is given by conjugation. That is to say, if & € A is
the associated homomorphism of a smooth action a: SO5 x S? — S?, f € D and g € SO,
then T is defined by

Y(f,a)(g) = foagof ' =(Tsa),

This action of D preserves the kernels of each element of A, so it restricts to an action on
&. Theorem B shows that for all @ € €, there is some linear action A € &, and some element
f € D that satisfies T = A. Conjugation by a change of basis matrix shows that there is

no loss of generality in assuming that X is the standard inclusion of SOs < D. This shows

12Here by an embedding we mean both a homomorphism and a homeomorphism onto its image.
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that all effective smooth actions & are in the same Y-orbit as the standard inclusion, so the
action T is transitive on €. Clearly the trivial homomorphism 1 : g + idg2 is alone in its
orbit, so we obtain the T-equivariant decomposition A = € U {1}.
If fe StabT(S\), then Tfj\ = ), or in other words,
fodof ™t =), VgeS0O; or fody = Njof, VgeSO;
Let x € S?% and let ¢ € SO;3 be such that A, is a non-trivial rotation about the axis
determined by z. For any f € Staby()), we have that
A (F(2)) = f(Agz) = [(2)
—
flz) = +x
=

f=+41€80,<D

Hence we find that Staby(\) = {£I}. Both SO3; and S? are compact, so by |12, Cor. 2],
we have that
: 2y ~ D _D ~ v \) —
Diffo(5%) = /{il} = /Staby()\) = Orby(A) = &,
where Diffy(5?) is the subgroup of orientation preserving diffeomorphisms of the sphere. This

proves the corollary.



o1

S. C. Sanford §6.0

[1]

2]

REFERENCES

R. H. Bing. A homeomorphism between the 3-sphere and the sum of two solid horned spheres. Ann. of
Math. (2), 56:354-362, 1952.

Glen E. Bredon. Introduction to compact transformation groups. Academic Press, New York-London,
1972. Pure and Applied Mathematics, Vol. 46.

B. de Kerékjdrté. Sur les groupes compacts de transformations topologiques des surfaces. Acta Math.,
74:129-173, 1941.

Manfredo do Carmo. Riemannian Geometry. Birkhduser Basel, 1992. URL: http://www.springer.
com/us/book/9780817634902

Allan L. Edmonds. Transformation groups and low-dimensional manifolds. In Group actions on man-
ifolds (Boulder, Colo., 1983), volume 36 of Contemp. Math., pages 339-366. Amer. Math. Soc., Prov-
idence, RI, 1985. URL: http://dx.doi.org/10.1090/conm/036/780973, doi:10.1090/conm/036/
780973,

Ian Hambleton and Jean-Claude Hausmann. Equivariant principal bundles over spheres and cohomo-
geneity one manifolds. Proc. London Math. Soc. (3), 86(1):250-272, 2003. URL: http://dx.doi.org/
10.1112/50024611502013722, doi:10.1112/50024611502013722.

Ian Hambleton and Jean-Claude Hausmann. Equivariant bundles and isotropy representations. Groups
Geom. Dyn., 4(1):127-162, 2010. URL: http://dx.doi.org/10.4171/GGD/77, doi:10.4171/GGD/77.

Boris Kolev. Sous-groupes compacts d’homéomorphismes de la sphere. Enseign. Math. (2), 52(3-4):193—
214, 2006.

John W. Milnor and James D. Stasheff. Characteristic classes. Princeton University Press, Princeton,
N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76.

James Munkres. Differentiable isotopies on the 2-sphere. Michigan Math. J., 7:193-197, 1960. URL:
http://projecteuclid.org/euclid.mmj/1028998426.

James Munkres. Obstructions to the smoothing of piecewise-differentiable homeomorphisms. Ann. of
Math. (2), 72:521-554, 1960.

Richard S. Palais. Equivalence of nearby differentiable actions of a compact group. Bull. Amer. Math.
Soc., 67:362-364, 1961.

Elmer G. Rees. Notes on Geomtry. 1983. URL: http://dx.doi.org/10.1007/978-3-642-61777-5,
do1:10.1007/978-3-642-61777-5.

Reinhard Schultz. Nonlinear analogs of linear group actions on spheres. Bull. Amer. Math. Soc. (N.S.),
11(2)2637285,1984.[H1L:http://dx.doi.org/lO.1090/50273—0979—1984—15290—X,doi:10.1090/

S0273=0979=1984=15290=X.


http://www.springer.com/us/book/9780817634902
http://www.springer.com/us/book/9780817634902
http://dx.doi.org/10.1090/conm/036/780973
http://dx.doi.org/10.1090/conm/036/780973
http://dx.doi.org/10.1090/conm/036/780973
http://dx.doi.org/10.1112/S0024611502013722
http://dx.doi.org/10.1112/S0024611502013722
http://dx.doi.org/10.1112/S0024611502013722
http://dx.doi.org/10.4171/GGD/77
http://dx.doi.org/10.4171/GGD/77
http://projecteuclid.org/euclid.mmj/1028998426
http://dx.doi.org/10.1007/978-3-642-61777-5
http://dx.doi.org/10.1007/978-3-642-61777-5
http://dx.doi.org/10.1090/S0273-0979-1984-15290-X
http://dx.doi.org/10.1090/S0273-0979-1984-15290-X
http://dx.doi.org/10.1090/S0273-0979-1984-15290-X

§6.0 Smooth Conjugacy 52

[15] Tammo tom Dieck. Transformation groups, volume 8 of De Gruyter Studies in Mathematics. Walter de
Gruyter & Co., Berlin, 1987. URL: http://dx.doi.org/10.1515/9783110858372.312, doi:10.1515/
9783110858372 317,

[16] Jean Verrette. Results on algebraic realization of equivariant bundles over the 2-sphere, 2016. URL:
https://math.hawaii.edu/home/theses/PhD_2016_Verrette.pdf.

[17] Joseph A. Wolf. Spaces of constant curvature. Publish or Perish, Inc., Houston, TX, fifth edition, 1984.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAI‘T AT MANOA, 2565 MCcCARTHY MALL, HON-
oLuLU, HI 96822

F-mail address: ssanford@hawaii.edu


http://dx.doi.org/10.1515/9783110858372.312
http://dx.doi.org/10.1515/9783110858372.312
http://dx.doi.org/10.1515/9783110858372.312
https://math.hawaii.edu/home/theses/PhD_2016_Verrette.pdf

	1. Introduction
	2. Preliminaries
	3. Classification of Compact Subgroups of O3 up to Conjugacy
	4. Construction of Equivariant Skeleta for the Finite Subgroups
	5. Proof of Theorem 2
	6. Proof of Corollary 3
	References

